,Introduction guide”

Arkadiusz Chrobot, PhD
Karol Tomaszewski, PhD

February 24, 2024



Contents

Introduction 1
1. ssh 1
2. scp 1
3. Linux Cross Reference 2
Introduction

These introductory guide contains brief descriptions of the tools whose knowledge will be necessary
for the efficient implementation of tasks within the laboratories of Operating Systems 2. Each team will
be assigned a virtual machine that will need to be operated from the console, therefore it is necessary
to remember the basic commands of the system shell. These commands will not be described in these
guides. Section 1 describes how to use the ssh (Secure Shell) command, Section 2 presents the scp
(Secure Copy) command, and Section 3 refers to the use of the Linux Cross Reference service.

1. ssh

The ssh command is used for working with the remote computer. This work is done using a system
shell (console), and the network traffic is encrypted. In case of laboratory classes, the remote computer is
a virtual machine. To connect to it, issue the following command in a local computer terminal or console:

ssh 502081.26.20.32 -p X

The so02 in the command is a username, 81.26.20.32 is an IP address of virtual machine server, and
X is a port number. Every team will have a separate virtual machine assigned. The port numbers used by
the machines will be given by the person conducting the laboratory classes. When the command is issued,
the remote system will ask for the password. Enter the password provided by the person conducting the
laboratory. While typing the password, no characters will appear on the screen until the Enter button
is pressed. Please note, that You can connect to the virtual machine only from within the Department
of Information Systems internal network, provided the machine is on.

The command allows You to log as the so2 user. This account has limited privileges. To load or
unload a kernel module, what is essential to accomplish tasks from laboratory guides, You need to log
to the root account, using the following command:

su -

The system will ask for the root user password, which also will be given by the person conducting
the laboratory. If the password is valid, then You will be granted access to an account that allows You
to administrative operations, including those mentioned earlier.

It is also possible to log in as the root using another command:

sudo su -

This time, the system will ask for the so2 user password, not the root one. If it is valid, You will
also be granted access to the root account.

The sudo command has more applications. Generally, it is uses to perform privileged commands
by an unprivileged user. However, these cannot be any commands. They should have been previously
specified for that user by the root.

2. scp

The scp command belongs to the same package as ssh. It allows the user to copy files between a
local and a remote computer. Copying of the file named source.c located in the current directory on
the local machine, to the home directory of the so2 user on the remote virtual machine on the X port,
can be done using the following command:

scp -P X source.c s02081.26.20.32:~



Please note the ,, : ” character after the 1P address followed by the directory name. In this case, it is
the user’s home directory, which in Linux is denoted with a tilde character (~). Should the destination
directory be lab1l, located inside the home directory, then the command would have to be:

scp -P X source.c s02081.26.20.32:~/1abl

The remote system will ask for the so2 user password, just like in the case of ssh.

Similarly, files can be copied in the opposite direction. For example, to copy a file named Makefile
from the home directory of the so2 user at the virtual machine, to the local computer current directory,
issue the following command:

scp -P X s02081.26.20.32:~/Makefile .

The dot at the end of the command denotes the current directory. Please note, that the order of scp
arguments is the same, as in the case of the cp command, used for copying files localy.

There are two ways to copy the entire directory to a remote system. Suppose this directory is called
sources and is a subdirectory of the current directory. The first way is to use the -r option of the scp
command, which recursively copies the directory:

scp -P X -r sources s02081.26.20.32:~

In the second method, the directory should be first compressed, e.g. with the tar command. It can

be done as follows:
tar jcvf sources.tar.bz2 sources,

where sources.tar.bz2 is the name of the output file being a compressed archive of the sources
directory. After copying it to a remote computer, its contents can be extracted with the command:

tar xvf sources.tar.bz2

3. Linux Cross Reference

There is documentation for the Linux kernel source code in the form of man pages, but unfortunately
it is very limited. The best way to investigate what a piece of code does and how it is built is to
browse kernel sources, which are very extensive. Fortunately, there is a tool that can generate HTML
pages that allow to easily navigate this code. The pages created this way are available, among others, at
https://elixir.bootlin.com/linux/latest/source. The following example describes how to use this
site, searching for information about the schedule() function'. After visiting the given URL address,
the page should appear like in Figure 1.

On this page, the version 4. 15 of the kernel sources should be selected, as shown in Figures 2 and 3.

After selecting the kernel source code version, enter the name of function: schedule in the Search Iden-
tifier field, then click the search icon or press Enter (Figure 4).

The results page is divided into two parts. The first part, marked in yellow in Figure 5, contains
references to the lines in the files in which the prototype or definition of the function is located. The
second part, whose fragment is marked in green, is a list of links to the file lines in which this function
is used.

After clicking the first link in the Defined in & files: section, the user will be taken to the page with
the function declaration. Its prototype (header) is marked in yellow in Figure 6.

After clicking the second link in the aforementioned section, the user will be taken to the page with
the definition of this function, which is marked in yellow in Figure 7.

IThis function is an implementation of the processor scheduler.


https://elixir.bootlin.com/linux/latest/source

Linux debugging, tracing,

profiling & perf. analysis
Check our new traiing course
with Creative Gommons CC-8Y-SA
lecture and lab materiais

linux

bootlin

Elixir Cr

ALL synbols v Search Identifier Q
Documentation

LICENSES

arch

block

certs

crypto

drivers

fs

include

init.

io_uring

ipc

kernel

lib

mm

net

rust

samples.

scripts

security

sound

tools.

usr

virt

COPYING 496 bytes
CREDITS 102088 bytes
Kbuild 2573 bytes
Keonfig 555 bytes
MAINTAINERS 698282 bytes
Makefile 71848 bytes

DEADME. 2oL

linux % v6.2 powered by Elixir2.1

Figure 1: Main page of the Linux Cross Reference service

/ ALl symbols ~» Search Identifier Q
io_uring
ipc
kernel
lib
mm
net
rust
samples
scripts
security
sound
tools
usr
virt
COPYING 496 bytes
CREDITS 102739 bytes
Kbuild 2573 bytes
Kconfig 555 bytes
MAINTAINERS 731220 bytes
Makefile 67310 bytes
README 727 bytes

linux ® v6.7.5

powered by Elixir 2.2

Figure 2: Kernel source version selection menu



! ALL symbols v Search Identifier q
io_uring
ipc
kernel
lib
mm
net
rust
samples
scripts
security
sound
tools
usr
virt
COPYING 496 bytes
CREDITS 102739 bytes
Kbuild 2573 bytes
Kconfig 555 bytes
MAINTAINERS 731220 bytes
Makefile 67310 bytes
README 727 bytes

linux ® v6.7.5 powered by Elixir 2.2

Figure 3: Detailed menu for choosing the kernel source version

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

ALL symbols » Search Identifier

Documentation
arch
block
certs
crypto
drivers
firmware
fs
include
init

ipc
kernel

lib

mm

net
samples

scripts
linux ® va.15 powered by Elixir 2.2

Figure 4: Name search



pbootlin

s Referencer

Embedded Linux Audio

Gheck our new training course

with Creative Commons CC-BY-SA
lecture materials

Elixir Cros:

AU synbols v kchedule

linux /

include/linux/sched.h, line 178 (as a prototype)

drivers/gpu/drm/i915/intel_ringbuFfer.h, ine 407 (as a member)
drivers/net/usb/8152.c. e 715 (asa member)

drivers/net/wireless/ath/wcn36xx/hal h, ine 245 (asa member)
drivers/netfuireless/ath/wcn36whalh ne 45 s menber

CABE ififf . line 368 (a5 a member

V41547 ; A, ;

V41516 di i h, line 623 (as a member)

va151s drivers/scsi/ncrS3c8xx.c.line 1348 (as @ member)

V41514 drivers/usb/host/isp116x.h, line 324 (asa member)

va15.13 ) -

V41542 drivers/usb/host/isp1362.h, line 454 (asa member)

va151 drivers/usb/host/sl811.h, line 169 (a5 a member
i include/net/ip_vs.h, line 718 (o5 a member

V153

va158

vaisz

va1s6

g kernel/sched/core.c. line 3427 (as a function)

va1sa

V153

va1s

va1s.1 arch/alpha/kernel/entry.S, line 556

o arch/alpha/kernel/signal.c.ine 539

R arch/arc/kernel/entry-compact.S, line 354

Va5 arch/arc/kernel/entry.S, 2 times

s “'M arch/arm/kernel/signal.c, line 62

vatsc arch/armé4/kernel/signal.c. e 516

vaisc3 mnblaCullinenallanbanc

Figure 5: Results of the name search

Search Identifier

/ include / linux / schedh Al symbols v

extern long schedule_tineout(long tineout);
extern Long schedule_tineout_interruptible(Long tineout)

1 extern long schedule_tineout_killable(long tineout)

extern long schedule.tineout_uninterruptible(Long tineout);
extern long schedule_tineout_idle(long tineout;

178 | asnlinkage void schedule(void);

extern void schedule_preenpt_disabled(void);

extern int __must_check io. sd\edu\e_preparewold‘,v
extern void io_t s:hedu\e _finish(int tokes

extern long due_tineout(Long Eineout);

184 extern void i ,s:hedulhvold}.

V41518 1
V41517
V41516

1 struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
uea utd

usa
rau_spinlock_t
#endif

2 struct task_cputime {
usa

usa
unsigned Tong long sum_exec_runtine;

#define sched_exp

enn veinestate (

* Alternate field n hen used on cach 52 %
#efine virt_exp utine
221 #define prof_exp stine

sum_exec_runtine

Ppowered by Elixir2.2

Figure 6: Declaration of the schedule() function



AW synbols v

1 kemel / sched / core.c

if (blk_needs_flush_plug(tsk
blk_schedule_flush_plug(tsk)

asnlinkage __visible void _sched schedule(void

3427
struct task_struct “tsk = current.
sched_subnit_work(tsk)
do

preenpt_disable
__schedule(false!
sched_preenpt_enable_no_resched
va.15.18 ) while (need_resched
va1s.17
TG EXPORT_SYHBOL (schedule)
va15.15
va1s.12 tosks hove either left © .
V41511
V415,10 0
va1s9
va158
vold _sched schedule_idle(void)
WARN_ON_ONCE (current ->state)
do
va15cs __schedule(false)
while (need_resched())

va15cs

#Ufdef CONFIG_CONTEXT_TRACKING
asnlinkage __visible void __sched schedule_user(void)

vasc

linux ® va.15

Figure 7: Definition of the schedule() function

Search Identifier

powered by Elixir 22



	Introduction
	ssh
	scp
	Linux Cross Reference

