Laboratory 8: "Character device drivers”
(two weeks)

Arkadiusz Chrobot, PhD
Karol Tomaszewski, PhD

May 18, 2024

Contents

Introduction 1
1. Character device drivers 1
2. Description of character device drivers API 2
3. The Udev configuration 9
4. Example 9
Exercises 12
Introduction

On Linux, just like on other Unix-compatible systems, there are three main device categories distin-
guished:

character devices - these are devices that typically transmit data in small portions, often of varying
length and usually in a sequential manner;

block devices - these are devices that typically transmit information in large portions, the size of which
is usually a multiple of 512 bytes, and allow free access to data;

network devices - devices that perform data transmission on the network.

Character and block devices are provided by the system kernel to the user’s space using special files
called device files, which are usually located in the /dev directory. Each such file, except for its name,
has three attributes whose values can be checked by running the 1s -la command on such file. Files
related to character devices are marked with the letter ¢, and files associated with block devices have the
label b. In addition, each such file has two natural numbers associated with it, called the major number
and the minor number. The major number identifies the driver that supports a specific group of devices,
and the minor number identifies a specific device belonging to that group. Minor numbers may be unique
to a single driver, but they repeat between different drivers. Major numbers are unique within one device
class (e.g. character devices), but they can repeat between classes.

In the kernel space, support for all three categories of devices is associated with the Virtual File
System - VES. Each device access request initiated by a user process or user thread is forwarded to
the kernel space via system calls, then associated with the corresponding objects in the VFS subsystem
and is subject to further processing depending on the category of device or is directly transferred to the
device driver that performs them.

This guide describes creating drivers for the character devices. Chapter 1 is dedicated to describing the
typical structure and behavior of a character device driver. Chapter 2 describes the API used to implement
character device drivers. Chapter 3 explains the role of the udev user process in handling character and
block devices, and Chapter 4 lists the sample character device driver. Due to the environment used in
the laboratory, this is not a physical device, but a pseudo device, i.e. one whose operation is completely
simulated by the software. The instruction ends with a list of tasks to be independently implemented as
part of the laboratory.

1. Character device drivers

Character device drivers use two VFS objects: a file object and an i-node object. Each character
device driver has to perform two basic tasks, which is to initiate cooperation of the device with the
system kernel and to provide file object methods that perform operations on the device that will be run
as part of system calls.

In the case of physical devices, initiation can mean, for example, providing power to the device and
performing diagnostics. The driver is also responsible for providing and registering the interrupt handling

© N e oA W N R

procedure reported by this device and associated bottom halves mechanisms. In addition, the file object’s
method code must also handle the situation when operations on the physical device may require waiting
for them to complete and they may be performed concurrently. Therefore, it becomes necessary to use
appropriate synchronization means, which will also allow to stop waiting for the end of the operation,
if the process or thread of the user who initiated it receives a signal. Handling of the pseudo character
devices is simpler, and moreover, it is largely based on the same mechanisms as support for physical
devices. Its basic elements are:

1. obtaining the major and minor number,

2. initializing and adding a struct cdev structure to the kernel,

3. initializing and adding a structures related to the sysfs file system into the kernel,
4. initializing and adding the structure of the file object methods into the kernel.

If the device allows concurrent access, this must be included in the driver code. Very often, the
creators of drivers define their own structures that contain all information about the device and its
status. If the driver is to support or simulate the operation of more such devices, then each of them
should have its own such structure. The driver’s task is also to determine how many user processes or
threads can simultaneously use the device. Its creator should, therefore, take care of concurrency or use
measures that exclude this concurrency.

2. Description of character device drivers API

From the point of view of the creator of the character device driver, the most important are three
types of structures: struct cdev - which defines the structure representing the character device in the
system kernel, struct file - which defines the structure that describes the attributes of the file object,
and struct file_operations - which defines pointers for functions that perform operations on file
object, or methods associated with this object. The file object represents open files on the system, and
the last two structures define its class. The character device driver can also use a fourth structure - the
struct inode structure, which defines the attributes of the i-node object.

Listing 1 presents the definition of the cdev structure type. Most of the fields contained in this
structure are initialized using the appropriate functions and macros, which will be described later in the
guide. The dev field contains the device number, which consists of a major and minor number. The ops
field is a field containing a pointer to the file object’s method structure. The kobj field is a kernel object
associated with the device model and the sysfs file system, which is described in the fourth laboratory
instruction. The programmer writing the kernel module must remember to directly initialize the owner
field, which is a pointer to the structure representing the module in which the struct cdev type has
been declared.

Listing 1: The struct cdev definition

struct cdev {
struct kobject kobj;
struct module *owner;
const struct file_operations *ops;
struct list_head list;
dev_t dev;
unsigned int count;

g

Listing 2 provides a struct file definition that is passed through VFS to most functions pointed
to by struct file_operations fields. Driver developers most often use the private_data pointer field
of this structure. As the name suggests, it may point to a memory area containing local (private) driver
data. If this area is allocated dynamically, be sure to release it before removing the driver from the
system kernel. Other fields, such as £_op - a pointer to the file object’s method structure, f_flags - file
open flags, f_mode - file access mode, or f_pos - file pointer, can also be useful.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

Listing 2: The struct file definition

struct file {

union {
struct 1llist_node fu_1list;
struct rcu_head fu_rcuhead;
}ofu;
struct path f_path;
struct inode *f_inode; /* cached wvalue */
const struct file_operations *f_op;
/*

* Protects f_ep_links, f_flags.
* Must not be taken from IRQ context.

*/

spinlock_t f_lock;

atomic_long_t f_count;

unsigned int f_flags;

fmode_t f_mode;

struct mutex f_pos_lock;

loff_t f_pos;

struct fown_struct f_owner;

const struct cred *f_cred;

struct file_ra_state f_ra;

u64 f_version;
#ifdef CONFIG_SECURITY

void *f_security;

#endif
/* needed for tty driver, and maybe others */
void *private_data;

#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c to link all the hooks to this file */

struct list_head f_ep_links;

struct list_head f_tfile_1llink;
#endsif /* #ifdef CONFIG_EPOLL */

struct address_space *f_mapping;

} __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */

The definition of struct file_operations structure type is provided in Listing 3. Its fields are
pointers to functions, which are methods of the file object. They are run from the level of system calls
and they directly handle the operation of the device. The creator of the driver does not have to define
them all. The most important of them are open(), release(), read() and write(). Some character
devices offer free access to data. In this case the 11seek () function is also defined. The way of defining
these methods will be described in more detail later in the document. The definitions of the other methods
are less common in character device drivers, yet they are also worth to mention. The unlocked_ioctl()
and compat_ioctl() - those methods run from the level of the ioctl() call that allow to perform
operations on the device that cannot be directly implemented using the other methods. The poll1()
and fasync() - those are the methods that notify user processes/threads of the occurrence of new data
on the character device.

Listing 3: The struct file_operations definition

struct file_operations {
struct module *owner;
loff_t (*1lseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*¥read_iter) (struct kiocb *, struct iov_iter *);

20

21

22

23

24

26

27

28

29

30

31

33

34

35

ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (#mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*#fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*#fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area) (struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
int (*check_flags) (int);
int (*flock) (struct file *, int, struct file_lock *);
ssize_t (*splice_write) (struct pipe_inode_info *, struct file *, loff_t *, size_t,
unsigned int);
ssize_t (*splice_read) (struct file *, loff_t *, struct pipe_inode_info *, size_t,
unsigned int);
int (*setlease) (struct file *, long, struct file_lock **, void *x);
long (*fallocate) (struct file *file, int mode, loff_t offset, loff_t len);
void (*show_fdinfo) (struct seq_file #*m, struct file *f);

#ifndef CONFIG_MMU

}’

unsigned (*mmap_capabilities) (struct file *);

#endif

Not all methods that the struct file_operations can point to need to be implemented. In extreme

cases, it’s enough to implement one of them, e.g. the read() method. The most frequently defined
methods must meet the following requirements:

int (*open) (struct inode *, struct file *) - the method pointed by this field is run from the level

of the open() system call, i.e. each time the device file is opened from the user space. It may or
may not use structures whose addresses are passed to it as call arguments. In the case of the latter
variant, most often this method uses the private_data field of a struct file structure whose
address is given by the second argument. The role of this field has been explained before. It is in
this method that memory is allocated, whose address is stored in mentioned field. The memory
area indicated by it can be used as a convenient point of information exchange between the other
methods defined in the driver. In addition, this method performs all work initiating cooperation
between the software and a hardware device or pseudo device. If it succeeds, it should return 0.

int (*release) (struct inode *, struct file *) - the method indicated by this field is run from the

close() system call, i.e. when the device file is closed from the user space. Similar to the method
pointed to by the open pointer, it may or may not use the call arguments passed to it. Most often,
this method carries out activities related to the finalization of the device operation, e.g. turning
off power supply or releasing the memory pointed by the private_data field of a struct file
type. Successful completion should be signaled by this function by returning a value of 0 while the
exceptions are usually signaled by negative values.

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *) - the method indicated to by this

pointer is run from the level of the read () system call and performs data reading from the device.
Through the first call argument the struct file type address is passed to this method. The
second argument is a pointer to the buffer in the user space in which the method should store
the read data. The third argument contains the size of the data requested by the user space, and
the fourth argument indicates the variable, that is the file pointer. The last argument is often
used to determine which data is to be read and is also used to check that the request does not

© W N O e oA W N =

exceed the size of the supported device. The first argument is also used to obtain the pointer for
private data. The second argument should be handled via the copy_to_user() function, because
this function also checks the correctness of a given pointer. This method should return the amount
of data read, most often expressed by number of bytes. When the read operation ends the function
should return 0. Exceptions are signaled by the following example values: ~EFAULT - incorrect buffer
pointer in user space, —EIO0 - general input-output error, —EINTR - reading interrupted by signal.

ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *) - this pointer indicates the
method run from the write() system call level and writes data to the device. The role of its call
arguments is the same as for the method indicated by the read pointer. Only the meaning of the
buffer pointed by the second argument changes, from the output buffer to the input buffer, as it
now contains data to be written to a device. It should be also handled using the copy_from_user ()
function. The method should return the same values as the one pointed by the read, keeping in
mind that the returned value now concerns the saved data, not the read one.

loff_t (*llseek) (struct file *, loff_t, int) - the function indicated by this pointer is run from the
level of the 1seek() system call and its task is to change the value of the file pointer. Through its
first call argument the file object address is given. Through the second argument a new file pointer
value is passed, and through the third argument one of three following constant value are given:
SEEK_SET - it causes that the new value of the file pointer is calculated relative to its beginning,
which means that it should be set to the value that was passed to the method by the second
argument, after checking its correctness, SEEK_CUR - the new value of the file pointer is calculated
relative to its current value, i.e. it is set to the sum of its current value and the value given by
the second argument of the method, also verifying that the sum is correct, SEEK_END - the new
file pointer value is calculated relative to the end of the file, i.e. the value passed by the second
argument is subtracted from the maximum pointer value for the file and if this difference is correct,
the file pointer is set to this value. The method returns a new file pointer value, or ~EInvAL if the
new value was not valid.

Listing 4 presents the struct inode structure that together with a method structure, i.e. a struct
inode_operations structure defines an i-node object class. This second type of method structure will
not be described in this document, because it goes beyond its subject. Character device drivers typically
only use the struct inode structure, and more specifically its i_rdev and i_cdev fields. The first is a
field of type dev_t and it contains the device number. Because drivers are most often interested not in
the whole number, but in the major number and minor number, this field is not read directly, but with
the help of functions that will be described later. The second mentioned field contains a pointer to an
i_cdev type structure and can be used e.g. by the open() or release() method to determine which
devices supported by the driver must be served in a given call.

Listing 4: The struct inode definition

truct inode {

umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;

#ifdef CONFIG_FS_POSIX_ACL

struct posix_acl *¥i_acl;

struct posix_acl *i_default_acl;
#endif

const struct inode_operations *i_op;
struct super_block *i_sb;

struct address_space *1_mapping;

#ifdef CONFIG_SECURITY

[

9

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

void
#endi f

*1_security;

/* Stat data, not accessed from path walking */

unsigned long i_ino;
/*
* Filesystems may only read i_nlink directly.
* following functions for modification:
*
* (set/clear/inc/drop)_nlink
* inode_ (inc/dec)_link_count
*/
union {
const unsigned int i_nlink;
unsigned int __i_nlink;
I8
dev_t i_rdev;
loff_t i_size;
struct timespec i_atime;
struct timespec i_mtime;
struct timespec i_ctime;
spinlock_t
unsigned short i_bytes;
unsigned int i_blkbits;
blkecnt_t i_blocks;

#ifdef __NEED I_SIZE ORDERED
seqcount_t
#endif

/* Misc */
unsigned long
struct mutex

unsigned long
unsigned long

struct hlist_node

struct list_head
#ifdef CONFIG_CGROUP_WRITEBACK

struct bdi_writeback

They shall use the

i_lock; /* 4_blocks, i_bytes, maybe i_size */

i_size_seqcount;

i_state;
i_mutex;

dirtied_when; /*
dirtied_time_when;

i_hash;
i_io_list;

/%

/¥

*1_wb;

jiffies of first dirtying */

backing dev I0 list */

the assoctated cgroup wb */

/* foreign inode detection, see wbc_detach_inode() */

i_readcount; /* struct files open RO

int i_wb_frn_winner;
ulé i_wb_frn_avg_time;
ulé i_wb_frn_history;
#endi f
struct list_head i_lru; /*
struct list_head i_sb_list;
union {
struct hlist_head i_dentry;
struct rcu_head i_rcu;
I8
u64 i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
#ifdef CONFIG_IMA
atomic_t
#endif

inode LRU list */

*/

const struct file_operations *i_fop; /* former ->i_op->default_file_ops */

struct file_lock_context *i_flctx;

struct address_space i_data;

struct list_head i_devices;

union {
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;
char *i_link;

g

__u32 i_generation;

#1fdef CONFIG_FSNOTIFY

__u32 i_fsnotify_mask; /* all events this inode cares about */
struct hlist_head i_fsnotify_marks;

#endif
void *i_private; /* fs or device private pointer */

g;

In addition to the structure types described earlier, which are defined in the 1inux/fs.h and linux/cdev.h
header files, character device drivers also use macros and functions that are available after including the
above files and linux/device.h header file in the code. Below are descriptions of the most important of
them.

MKDEV (ma,mi) - a macro that creates and returns the device number (value of type dev_t based on
the numbers provided to it: major (ma) and minor (mi)).

MAJOR(dev) - a macro that from the given device number reads and returns the major number.
MINOR(dev) - a macro that from the given device number reads and returns the minor number.

int register_chrdev_region(dev_t, unsigned, const char *) - a function that reserves a specific
range of device numbers for the needs of the driver. As the first call argument it takes the first
number in the range to be reserved, and as the second argument it takes the amount of these
numbers. As the third argument the function takes a pointer to the string being the name of the
device. The first device number is usually created using the MKDEV macro, specifying the major
number and using 0 as the minor number. So the actual challenge is to find the first free ma-
jor number. If the driver is to be used only on a single computer, then the currently already
reserved major numbers can be checked in the /proc/devices file. However, if it is to be made
available for public use, it is required to contact The Linux Assigned Names And Numbers Au-
thority (shortly: LANANA) at http://www.lanana.org/ with a request to assign such a number.
Because this process is troublesome, drivers more often use the function described as next. The
register_chardev_region() function returns zero if the reservation succeeds, or a negative num-
ber otherwise.

int alloc_chrdev_region(dev_t *, unsigned, unsigned, comst char *) - the function assign the spec-
ified range of device numbers. The first device number in this range is stored in a variable of type
dev_t, whose address is passed to the function through its first call argument. The first minor
number (usually 0) is passed through the second argument. The third argument is used to pass
the amount of device numbers from the desired range, and the fourth argument is a pointer to
the character string being the device name. The function returns zero if the assignment succeeds,
or a negative number otherwise.

void unregister_chrdev_region(dev_t, unsigned) - a function that unregisters a range of device
numbers allocated or reserved by the functions described above. It returns no value, and takes

http://www.lanana.org/

two call arguments. The first argument is the first device number in the assigned range, and the
second argument is the amount of numbers in this range.

void cdev_init(struct cdev *, const struct file_operations *) - a function that initializes a struc-
ture of type struct cdev. The address of this structure is passed as the first call argument, and the
struct file_operations structure address (the structure of the file object methods) is passed
as the second call argument. This function returns nothing.

int cdev_add(struct cdev *, dev_t, unsigned) - a function that adds a structure of type struct
cdev to the system. The address of this structure is passed to the described function as the first
call argument. This structure represents a character device in the system kernel and is attached
to a list that collects the structures of all such devices. A single structure is created for each
device supported by the driver separately. The second call argument is the first device number
assigned to the device, and the third argument is the amount of consecutive numbers that are
associated with the device. The function returns zero if it succeeds or a negative number otherwise.

void cdev_del(struct cdev *) - function that removes a structure of type struct cdev from the
list of all such structures in the system. It does not return anything.

class_create(owner, name) - a macro that creates directories and files related to the driver in the
/sys directory and it also creates a structure of type struct class whose address is then being
returned. As the call arguments the function takes respectively: the address of the structure rep-
resenting the module in the system and the string being the name of the device.

void class_destroy(struct class *cls) - a function that releases the memory for the structure
created by the class_create macro. The address of this structure is passed as its call argument.

struct device *device_create(struct class *cls, struct device *parent, dev_t devt, void *drvdata,

const char *fmt, ..) - a function that creates and returns a structure of type struct device, and
also sends messages to the udevd daemon about a need to create device files. As the first call argu-
ment it takes a pointer to a structure of type struct class. The second argument is the address
of a structure of type struct device that will be the parent structure of the newly created
structure. If this is not the case then this argument is NULL. The third argument is the device
number. The fourth argument is a pointer to the data for callback functions. Most often its value
is also nuLL. The fifth argument is a string containing the device name. It may contain formatting
strings, so this argument may optionally be followed by other arguments in the amount and types
specified by the number and type of the formatting strings.

void device_destroy(struct class *cls, dev_t devt) - a function that removes a structure of type
struct device and sends messages to the udevd daemon from the user space to remove the ap-
propriate device files. It takes two call arguments. The first is a structure of type struct class
and the second is the device number.

unsigned imajor(const struct inode *inode) - an inline function that reads the major number
from the i_rdev field of the i-node object and returns it. It takes the i-node object address as its
call argument.

unsigned iminor(const struct inode *inode) - an inline function that reads a minor number from
the i_rdev field of the i-node object and returns it. It takes the i-node object address as its call
argument.

© 0 N o G A W N e

3. The Udev configuration

The description of the device_create() and device_destroy() functions mentions that they send
messages to the user space. These messages are processed by a system called udev. Its most important
element is the udevd daemon', which responds to these messages by creating or deleting device files. By
default, these files are created in the /dev directory and only the root user can access them. However,
it is possible to provide a specification for this deamon on what attributes such a file should have after
creating it. This can be done by creating a file with the appropriate configuration rules and placing it in
the /etc/udev/rules.d/ directory. Listing 5 contains a set of such rules for a pseudo character device
created by a driver whose source code contains Listing 6. The number being a prefix of this file’s name
determines the order in which udevd will process this file relative to other rule files. The KERNEL token
specifies the name of the message to which further tokens apply. The naME token specifies the name of the
device file. The owNER token specifies the name of the device file owner. Because the driver was written
for Linux Raspbian, the owner will be pi. The MODE token determines the mode of access to the device
file and in this case it is read and write for the owner. There are also other tokens that were not used in
this file. Their description, as well as a description of creating rules can be found in the system manual
available after using the man udev command.

Listing 5: Configuration file 41-fibdev.rules for the udevd daemon

KERNEL=="fibdev", NAME="fibdev", OWNER="pi", MODE="0660"

4. Example

Listing 6 contains the source code of a pseudo character device that generates consecutive elements
of the Fibonacci sequence until their value exceeds the upper limit of the uint64_t range. This type is
a type introduced into the C99 standard. It allows to store natural numbers and its size of 64 bits is
independent of the hardware platform. The elements of this sequence can be displayed on the screen,
e.g. using the cat /dev/fibdev command.

Listing 6: Driver for the pseudo character device

#include<linuz/module.h>
#include<linuz/fs.h>
#include<linuz/cdev.h>
#include<linuz/device.h>
#include<linuz/uaccess.h>

#define NAME "fibdev"
static uint64_t first, second;

static ssize_t fib_read(struct file *f, char __user *u, size_t size, loff_t* pos)
{
uint64_t tmp;
char fibnum[100];
size_t trans_unit = snprintf (fibnum,sizeof (fibnum),"%1lu\n",first);
if (trans_unit<0)
return -EIO;
if (copy_to_user(u, (void #*)fibnum,trans_unit))
return -EIO;

tmp = first+second;
if (tmp>=second) {
first = second;

IThat’s the way to call a server-process in Unix

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

static

{
}

static

{

static

static

3

static
static
static
static

static

{

second = tmp;
} else
return 0;

return trans_unit;

ssize_t fib_write(struct file *f, const char

return O;

__user *u, size_t size, loff_t* pos)

int fib_open(struct inode *ind, struct file *f)

first = 0;
second = 1;
return 0O;

int fib_release(struct inode *ind, struct file *f)

return 0O;

struct file_operations fibop =

.owner = THIS_MODULE,
.open = fib_open,
.release = fib_release,
.read = fib_read,
.write = fib_write,

dev_t number = 0;

struct cdev fib_cdev;
struct class *fib_class;
struct device *fib_device;

int __init fibchar_init(void)

if (alloc_chrdev_region(&number,0,1,NAME)<0) {

printk (KERN_ALERT "[fibdev]: Region allocation error!\n");

return -1;

fib_class = class_create(THIS_MODULE,NAME);

if (IS_ERR(fib_class)) {

printk (KERN_ALERT "[fibdev]: Error creating class: %1d!\n",PTR_ERR(fib_class));
unregister_chrdev_region(number,1);

return -1;

cdev_init(&fib_cdev,&fibop) ;
fib_cdev.owner = THIS_MODULE;

if (cdev_add(&fib_cdev,number,1)) {

printk (KERN_ALERT "[fibdev]: Error adding cdev!\n");

class_destroy(fib_class);

unregister_chrdev_region(number, 1) ;

return -1;

10

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

107

108

109

110

112

113

114

}

fib_device = device_create(fib_class, NULL, number, NULL, NAME);
if (IS_ERR(fib_device)) {
printk(KERN_ALERT "[fibdev]: Error creating device: %1d!\n",PTR_ERR(fib_device));
cdev_del (&fib_cdev) ;
class_destroy(fib_class);
unregister_chrdev_region(number,1);
return -1;

}
return O;
}
static void __exit fibchar_exit(void)
{
if (fib_device)
device_destroy(fib_class,number) ;
cdev_del (&fib_cdev);
if (fib_class)
class_destroy(fib_class);
if (number>=0)
unregister_chrdev_region(number,1);
}

module_init(fibchar_init);

module_exit (fibchar_exit) ;

MODULE_LICENSE("GPL") ;

MODULE_AUTHOR("Arkadiusz Chrobot <a.chrobot@tu.kielce.pl>");
MODULE_DESCRIPTION("A pseudo character device that generates Fibonacci numbers");
MODULE_VERSION("1.0");

In line 5 of the source code from Listing 6, a header file is included containing the declaration of
the copy_to_user () function, which was described in the instructions about the procfs and sysfs file
systems. Line 7 defines a string that is the name of the device, which will also be the device’s file name.
Line 9 defines two variables that will be used to generate the next elements of the Fibonacci sequence.
Lines 11-29 contain the fib_read() function definition, which is the implementation of the read()
method of the file object. Lines 13-15 contain local variable declarations. The first of them (tmp) has a
helper role in generating subsequent elements of the Fibonacci sequence. The second variable fibnum is
an array of characters in which the specified element of the sequence will be written as a string. The
conversion of this element, which is stored in the variable first, is done by the function snprintf () in
line 15. The result of its operation, i.e. the length of the string is stored in the trans_unit variable. If
this conversion fails, the snprintf () function will return a negative value and the fib_read () function
will terminate by signaling an error with the returned -g10 value. This function will behave similarly if
copying of the string to the buffer in the user space by the copy_to_user () function fails (line 18). In
line 21 the value of the next element in the Fibonacci sequence is determined, based on the value of the
two previous elements. If it is greater-than or equal to the value of the second of them, then it has been
calculated correctly and can be made available to the user space. If not, it means that the upper limit
of the uint64_t type range has been exceeded. In this case, the Fibonacci string generation should be
terminated and the method will return 0. Please note that the last element in the Fibonacci sequence
stored in the second variable is not provided to the user space.

The fib_write() function, defined in lines 31-34, is an implementation of the write() method of
the file object, but it does not perform additional actions except for returning 0. It has been defined only
so that the attempt to write to the device does not end in error.

The fib_open() function defined in lines 36-41 is an implementation of the open() method of the
file object. It sets initial values for variables first and second, and returns 0.

The fib_release() function defined in lines 43-46 implements the release() method of the file
object. It returns 0 and does not perform any additional actions. Thus, closing a device file, or more

11

precisely its most recent closing, always succeeds.

Lines 48-55 define the fibop structure of the struct file_operations type. The pointer fields of
this structure are then initialized, to indicate implementations of the file object methods. The owner
field is assigned with the address of the struct module structure returned by the THIS_MODULE macro.

In line 57, a variable is declared and initialized that will store the device number. In line 58, a struct
cdev structure is declared, and lines 59 and 60 contain pointer declarations for struct class and struct
device types. Usually the variables listed in this section are defined as fields of a separate structure, but
for a simple character device driver there is no such need.

Lines 62-96 contain the definition of the module constructor. In line 64, a device number is assigned
to the driver. Due to the fact that it will support only one pseudo device, you only need one such
number. If this assignment fails, an appropriate message will be put in the kernel buffer (line 65) and
the function will end by returning the value -1. In line 69, a struct class structure is created, as well
as the corresponding directories and files in the sysfs file system. Line 70 checks whether the latter
operation was successful. If not, the error code will be contained in the returned address. In this case,
the constructor writes this code to the kernel buffer, then (line 72) releases the assigned device number
and (line 73) exits. On line 76, a struct cdev structure is initialized. Its owner field must be initialized
separately (line 77) with the address returned by the THis_MopuLE macro. In line 79, this structure is
added to the system. If this operation fails, then in addition to placing the appropriate message in the
kernel buffer, the constructor releases the previously created structure and device number, and then exits.
On line 86, a sTRUCT DEVICE structure is created and a message is sent to the udevd daemon from user
space. If this operation fails, the effects of all previous operations are rolled back before the constructor
finishes signaling the error. However, if this operation is successful, the constructor exits with zero.

The module destructor is defined in lines 98-107. In this function, memory for struct device
and struct class (lines 101 and 104) is released. The cdev structure (line 102) is removed from the
system and the device number (line 106) is released, provided that operations related to these elements
were successful in the constructor. Please note that these operations are performed in reverse order to
their constructor counterparts. This is the correct order of finalization.

Exercises

1. [3 points] Change the constructor code from Listing 6 so that it uses the goto instruction to
handle exceptions, but behaves the same.

2. [5 points] Change the module code from Listing 6 so that the elements of the Fibonacci sequence
are written to the array and implement the 11seek () method so that you can indicate the element
that should be read. Write program for the user space that will use this driver property.

3. [7 points] Write a driver that will support two pseudo character devices. The first device will
return the next natural number in relation to the number written to it, and the second device will
return the previous natural number in relation to the number written to it. These input numbers
should fall within the u64 range. Remember to synchronize read and write.

4. [3 points] Change the module code from Listing 6 so that the fib_open() function returns only
0, but that the module operation is preserved.

5. [6 points] Write a kernel module that will create a pseudo character device called clipboard
that allows you to write (e.g. using the echo command) and read a string not longer than 1024
characters. Remember to synchronize read and write.

6. [7 points] Write a driver of a pseudo character device that will return the text provided to it
through a file in the sysfs file system. Remember to synchronize the reading and writing from the
sysfs file system level.

12

	Introduction
	Character device drivers
	Description of character device drivers API
	The Udev configuration
	Example
	Exercises

