Algorithms and Data Structures 1/2

Exercise Algorithms and Data Structures

#4 Topic: Dynamic data structures — trees Version: 1.0 / 2019

Prepared by: dr inz. Grzegorz Lukawski & dr inz. Barbara Lukawska

1) Binary Search Trees (BST)
1.1) The definition

Tree — a recursive dynamic data structure. Tree consists of finite number of nodes which are either empty,
or contain disjoint subtrees.

Its size is unrestricted, it can store initially unknown and variable number of elements (nodes).
Nodes are linked with pointers, where an element (parent) is linked to more elements (children).
An element of a tree is a structure, storing a piece of data and an additional pointers to its subtrees.
Nodes with the same parent are called siblings.

1.2) Types of trees

Binary tree — tree with nodes with at most two children.

Binary Search Tree — tree with ordered nodes: left subtree contains only smaller elements, right subtree
only larger.

Perfectly balanced binary tree — a tree, in which the number of nodes in left and right subtree differs
by no more than 1.

AVL balanced binary tree — a tree, in which the height of left and right subtree differs by no more
than 1.

Multiway tree — a binary tree, where nodes are organized into siblings (right pointer) and children (left
pointer).

B trees — trees with values “grouped” into nodes, creating large “pages” for efficient access to memory.
B+ trees — a combination of B-tree and unidirectional list.

Tries — high-order trees storing strings of characters.

1.3) Example implementation of a Binary Search Tree
Data structure:

struct Node {

}s

int transcript;
float stipend;
float average;
struct Node *left;
struct Node *right;

Pointer to the first element of the tree (root):

struct Node *root = NULL;

Algorithms and Data Structures 2/2

Inserting a new element into BST, ordered by transcript number (recursive):

void insert_item(struct Node **t, int transcript, float s, float a) {
if (*t == NULL) {

struct Node *item = new Node;

item->transcript = transcript;

item->stipend = s;

item->average = a;

// Leaf (no children):

item->left = NULL;

item->right = NULL;

// Modify the pointer:

*t = item;
}
else {
// Left or right child (may be NULL):
struct Node *item = *t;
if (transcript < item->transcript)
insert_item(&item->left, transcript, s, a);
if (transcript > item->transcript)
insert_item(&item->right, transcript, s, a);
}

Example usage:
int transcript, stipend, average;
cin >> transcript >> stipend >> average;
insert_item(&root, transcript, stipend, average);

2) Exercises
Write a program in C++, where the user can add new elements to a BST tree. Sample code shown above
may be used for the implementation. Expand your program with the following features:

A) Display content of the tree in ascending and descending order (inorder traversal method);
B) Find the student with given transcript number and display his data;

Additional exercises:
C) Count and display the total amount of money required for stipend for all students;
D) Find and display minimum and maximum transcript number;
E) Find and display minimum and maximum average grade.

