
Algorithms and Data Structures 1/2

Exercise

#4

Algorithms and Data Structures

Topic: Dynamic data structures – trees Version: 1.0 / 2019

Prepared by: dr inż. Grzegorz Łukawski & dr inż. Barbara Łukawska

1) Binary Search Trees (BST)

1.1) The definition

 Tree – a recursive dynamic data structure. Tree consists of finite number of nodes which are either empty,

or contain disjoint subtrees.

 Its size is unrestricted, it can store initially unknown and variable number of elements (nodes).

 Nodes are linked with pointers, where an element (parent) is linked to more elements (children).

 An element of a tree is a structure, storing a piece of data and an additional pointers to its subtrees.

 Nodes with the same parent are called siblings.

1.2) Types of trees

 Binary tree – tree with nodes with at most two children.

 Binary Search Tree – tree with ordered nodes: left subtree contains only smaller elements, right subtree

only larger.

 Perfectly balanced binary tree – a tree, in which the number of nodes in left and right subtree differs

by no more than 1.

 AVL balanced binary tree – a tree, in which the height of left and right subtree differs by no more

than 1.

 Multiway tree – a binary tree, where nodes are organized into siblings (right pointer) and children (left

pointer).

 B trees – trees with values “grouped” into nodes, creating large “pages” for efficient access to memory.

 B+ trees – a combination of B-tree and unidirectional list.

 Tries – high-order trees storing strings of characters.

1.3) Example implementation of a Binary Search Tree

Data structure:

 struct Node {
 int transcript;
 float stipend;
 float average;
 struct Node *left;
 struct Node *right;
 };

Pointer to the first element of the tree (root):

 struct Node *root = NULL;

Algorithms and Data Structures 2/2

Inserting a new element into BST, ordered by transcript number (recursive):

 void insert_item(struct Node **t, int transcript, float s, float a) {

 if (*t == NULL) {

 struct Node *item = new Node;

 item->transcript = transcript;

 item->stipend = s;

 item->average = a;

 // Leaf (no children):

 item->left = NULL;

 item->right = NULL;

 // Modify the pointer:

 *t = item;

 }

 else {

 // Left or right child (may be NULL):

 struct Node *item = *t;

 if (transcript < item->transcript)

 insert_item(&item->left, transcript, s, a);

 if (transcript > item->transcript)

 insert_item(&item->right, transcript, s, a);

 }

 }

Example usage:

 int transcript, stipend, average;

 cin >> transcript >> stipend >> average;

 insert_item(&root, transcript, stipend, average);

2) Exercises

 Write a program in C++, where the user can add new elements to a BST tree. Sample code shown above

may be used for the implementation. Expand your program with the following features:

A) Display content of the tree in ascending and descending order (inorder traversal method);

B) Find the student with given transcript number and display his data;

Additional exercises:

C) Count and display the total amount of money required for stipend for all students;

D) Find and display minimum and maximum transcript number;

E) Find and display minimum and maximum average grade.

