
Systemy operacyjne 1
Laboratorium 10

„Gniazda BSD - protokoły internetowe”
(dwa tygodnie)

dr inż. Arkadiusz Chrobot

17 grudnia 2025



Wstęp
System Linux, który jest kompatybilny z Uniksem, podobnie jak wszystkie inne systemy z nim zgodne

posiada mechanizmy odpowiedzialne z obsługę komunikacji przy pomocy sieci komputerowej. Do nawią-
zywania połączeń oraz transmisji danych służą aplikacjom użytkowym w tym systemie gniazda BSD,
które po raz pierwszy zostały wprowadzone w wersji BSD systemu Unix. Jest to na tyle udane rozwią-
zanie, że w chwili obecnej gniazda te stanowią standard dla komunikacji lokalnej i zdalnej w większości
współczesnych systemów operacyjnych. W tej instrukcji zawarte są informacje na temat obsługi gniazd
BSD. Rozdział 1 opisuje ogólnie możliwości obsługi komunikacji sieciowej w systemie Linux. Rozdział
2 opisuje różnice między protokołami transmisyjnymi sieci Internet. Rozdział 3 zawiera informacje o ser-
werach iteracyjnych i współbieżnych. Rozdział 4 zawiera opis API gniazd BSD oraz sposobu jego użycia.
Rozdział 5 zawiera kody źródłowe dwóch programów (serwera i klienta) komunikujących się za pomocą
gniazd BSD z użyciem protokołu UPD/IP. Instrukcję kończy zestaw zadań do samodzielnego wykonania
na zajęciach laboratoryjnych.

1. Usługi sieciowe w Linuksie
Gniazda BSD (nazwa pochodzi od wersji BSD Uniksa, istnieją również gniazda TLI pochodzące

z Systemu V, ale nie są one używane w Linuksie) stanowią API dla protokołów komunikacyjnych stoso-
wane we wszystkich systemach operacyjnych, które umożliwiają pracę w sieci. W przypadku systemów
uniksowych umożliwiają nie tylko pracę w środowisku rozproszonym, ale również lokalną komunika-
cję między procesami stanowiąc uzupełnienie mechanizmów opisanych we wcześniejszych instrukcjach.
Dzięki gniazdom można pracować z protokołami należącymi do różnych dziedzin np.: Uniksa, Internetu
i Xerox NS. Dodatkowo możliwa jest praca zarówno z protokołami połączeniowymi, jak i bezpołączenio-
wymi.

2. Różnice między protokołem TCP i UDP
W dziedzinie Internetu aplikacje sieciowe wykorzystują najczęściej jeden z dwóch najpopularniejszych

protokołów warstwy transportowej: TCP lub UDP. Za pomocą pierwszego dane są wysyłane w postaci
strumienia. Ten protokół jest protokołem połączeniowym, zachowuje kolejność wysyłanych komunikatów
po stronie odbiorcy oraz nadzoruje przebieg transmisji dbając o retransmisję zagubionych i zniekształco-
nych pakietów. Nie ma w nim ograniczenia na rozmiar wysyłanych danych. W niektórych zastosowaniach
może się jednak okazać zbyt powolny. Można wtedy zamiast niego zastosować protokół UDP. Jest on
protokołem bezpołączeniowym. Jednorazowo można za pomocą tego protokołu wysłać dane o wielkości
mniejszej od 64 KiB. Protokół ten nie zapewnia retransmisji danych, a przypadki zniekształcenia lub
zagubienia pakietów należy obsługiwać samodzielnie. Jest on jednak zdecydowanie szybszy od proto-
kołu TCP. Pakiety obu protokołów są „opakowywane” w komunikaty protokołu IP, stąd najczęściej
w literaturze pojawiają się nazwy TCP/IP i UDP/IP.

3. Serwery iteracyjne i współbieżne
Aplikacje sieciowe można podzielić na dwie kategorie: klientów i serwery1. Zadaniem serwerów jest

wykonywanie usług, o które proszą klienty2. Obsługa żądań klientów może przebiegać w sposób sekwen-
cyjny (iteracyjny) lub współbieżny. W pierwszym przypadku serwer nawiązuje połączenie z klientem, re-
alizuje jego prośbę, wysyła odpowiedź i wraca do oczekiwania na połączenia z innymi klientami. Podczas
realizacji żądania klienta żaden inny klient nie jest w stanie połączyć się z serwerem. Serwer współbieżny
po nawiązaniu połączenia z klientem tworzy proces potomny (lub nowy wątek), który obsługuje prośbę
klienta, a proces macierzysty oczekuje na połączenia od innych klientów.

1W terminologii uniksowej nazywane demonami.
2To nie literówka. W języku polskim wprowadzono dwie odmiany liczby mnogiej wyrazu „klient”, aby odróżnić ludzi od

programów.

1



4. API gniazd BSD
Ta część instrukcji zawiera opis struktur danych i funkcji związanych z obsługą gniazd BSD.

4.1. Struktury danych
Strukturę wysyłanych przez gniazdo danych, czyli protokół wyższego rzędu, osadzony na protokole

transmisji określa użytkownik. Aby jednak nawiązać połączenie należy zadeklarować i wypełnić odpo-
wiednie pola zmiennej typu struct sockaddr_in, czyli pole sin_family, któremu w przypadku pro-
tokołów internetowych nadaje się wartość stałej af_inet (skrót od Address Family), pole sin_port,
któremu nadaje się numer portu3 oraz pole sin_addr, któremu przypisuje się strukturę typu struct
in_addr zawierającą adres internetowy drugiej strony połączenia. Jeśli struktura struct sockaddr_in
jest używana przez serwer do nazwania jego własnego gniazda, przez które będzie nawiązywał połączenie
z klientem, to pole sin_addr tej struktury może być zainicjowane poprzez nadanie mu wartości stałej
o nazwie inaddr_any. Inicjacja tego pola będzie jeszcze opisywana w dalszej części instrukcji. Więcej
informacji na temat tej struktury można uzyskać przy pomocy następującego polecenia:
man 7 ip

4.2. Opis funkcji
W tym podrozdziale opisane zostaną tylko funkcje niezbędne do wykonania większości zadań zawar-

tych w instrukcji. Osoby, które chcą dokładniej zapoznać się z tematyką pisania oprogramowania dla
sieci komputerowych powinny skorzystać z innych źródeł, jak np.: klasyczna już książka W. Richarda
Stevensa „Programowanie zastosowań sieciowych w systemie Unix”.

socket() - funkcja ta zwraca deskryptor gniazda, poprzez które będzie odbywała się komunikacja mię-
dzy stacjami roboczymi w sieci. Można o niej myśleć jako o funkcji open() przeznaczonej dla urzą-
dzeń sieciowych. Pierwszy pobierany przez nią argument oznacza rodzinę protokołów (af_inet dla
protokołów Internetu), drugi rodzaj gniazda (połączeniowe, inaczej strumieniowe - sock_stream,
bezpołączeniowe, inaczej datagramowe - sock_dgram), natomiast ostatni określa, którego konkret-
nie protokołu będziemy używać (w wypadku protokołów internetowych jest zazwyczaj równy 0).
Funkcja wykorzystywana jest zarówno przez oprogramowanie serwera jak i klienta. W przypadku
niepowodzenia utworzenia gniazda zwraca ona wartość -1.
Szczegóły: man socket

bind() - funkcja ta nadaje gniazdu nazwę. Zazwyczaj wywołuje ją serwer przed rozpoczęciem komunika-
cji z klientem, ale może jej również użyć klient celem zarezerwowania lub sprawdzenia adresu. Jako
argumenty bind() pobiera deskryptor gniazda, strukturę zawierającą adres komputera (patrz: man
unix, man 7 ip i podrozdział 4.1), oraz rozmiar tej struktury. Jeśli działanie funkcji się powiedzie,
to zwróci ona wartość 0, w przeciwnym przypadku -1.
Szczegóły: man 2 bind

connect() - funkcja ta jest wykorzystywana tylko przez klienta i służy do ustanowienia połączenia
z serwerem. Zazwyczaj używana w komunikacji przy pomocy protokołu połączeniowego, ale może
być także użyta w komunikacji za pomocą protokołu bezpołączeniowego. Przyjmuje ona jako argu-
menty: deskryptor gniazda, wskaźnik na strukturę z adresem serwera i rozmiar tej struktury. Jeśli
nawiązanie połączenia się powiedzie, to zwraca wartość 0, a jeśli nie to zwraca -1.
Szczegóły: man connect

listen() - ta funkcja jest używana przez serwer pracujący z protokołem połączeniowym do zgłoszenia, że
będzie on nasłuchiwał żądań połączenia. Jeśli serwer odbierze takie żądanie, to umieści je w kolejce.
Funkcja listen() przyjmuje dwa argumenty: deskryptor gniazda oraz liczbę żądań, które system
może umieścić w kolejce zanim zostaną one zaakceptowane (szczegóły: man tcp). Jeśli funkcja
wykona się prawidłowo, to zwróci 0, a -1 w przeciwnym przypadku.
Szczegóły: man listen

3Należy wiedzieć, że w Linuksie porty od 1 do 1023 są zarezerwowane dla użytkownika root. Porty o wyższych numerach
mogą być używane przez inne demony. Aby sprawdzić które porty są zarezerwowane, a które nie można zajrzeć do pliku
tekstowego /etc/services.

2



accept() - funkcja ta jest wywoływana przez oprogramowanie serwera pracującego z protokołem po-
łączeniowym. Służy ona do przyjmowania połączeń. Jej wywołanie wymaga trzech argumentów.
Pierwszym jest deskryptor gniazda, drugim wskaźnik do struktury, do której będzie zapisany adres
klienta, a trzecim wskaźnik na zmienną, w której zostanie zapisany rozmiar tej struktury. Funkcja
pobiera pierwsze żądanie z kolejki i tworzy dla niego gniazdo, o takich samych właściwościach jak
gniazdo, do którego nadeszło żądanie. Jeśli kolejka jest pusta, to accept() wstrzymuje działanie
do momentu, aż pojawi się w kolejce jakieś żądanie. W serwerach współbieżnych gniazdo, którego
deskryptor zwraca accept() jest obsługiwane przez proces potomny (lub nowy wątek). W przy-
padku niepowodzenia działania funkcja zwraca wartość -1.
Szczegóły: man 2 accept

read(), write() - funkcje te służą do odbierania i wysyłania danych w protokole połączeniowym.
Działają one trochę inaczej, niż w przypadku plików. Zamiast deskryptora pliku do ich wywołania
przekazuje się deskryptor gniazda. Jeśli przez gniazdo połączeniowe są wysyłane dane o rozmiarze
przekraczającym rozmiar bufora, to wprawdzie są wysyłane jako jeden strumień, ale mogą ulec
segmentacji. Oznacza to, że funkcja read() może odebrać mniej danych, niż określiliśmy to w jej
wywołaniu. Nie jest to błąd, należy po prostu powtórzyć jej działanie. Sposób ich wywoływania
został opisany w poprzedniej instrukcji.

close() - funkcja ta służy do zamykania gniazda po zakończeniu komunikacji, niezależnie od tego jakim
protokołem się posługujemy. Sposób jej wywołania został opisany w poprzedniej instrukcji. W przy-
padku gniazd jako argument jej wywołania przekazuje się deskryptor gniazda zamiast deskryptora
pliku.

sendto() - funkcja ta służy do wysyłania informacji przez gniazdo zarówno w protokole bezpołączenio-
wymi, jak i połączeniowym, choć częściej jest stosowana w tym pierwszym. Przyjmuje ona sześć
argumentów wywołania: deskryptor gniazda, wskaźnik na bufor wysyłanych danych, rozmiar bu-
fora, flagę (najczęściej 0), wskaźnik na strukturę w której zapisany jest adres przeznaczenia oraz
rozmiar tej struktury. Funkcja zwraca liczbę przesłanych bajtów lub -1 jeśli wystąpi wyjątek.
Szczegóły: man sendto

recvfrom() - funkcja ta służy do odbioru danych z gniazda zarówno w protokole bezpołączeniowym jaki
i połączeniowym, choć częściej jest stosowana w tym pierwszym. Liczba i znaczenie argumentów
jest podobne jak w przypadku funkcji sendto(). Różnica polega na tym, że do bufora na dane są
zapisywane odebrane informacje, a w przedostatnim argumencie zapisywany jest adres strony połą-
czenia, która te informacje nadała. Szósty argument funkcji jest wskaźnikiem na zmienną, w której
będzie zapisana wielkość odebranej struktury adresu. Wartość początkowa tej zmiennej powinna
być równa rozmiarowi zmiennej wskazywanej przez piąty argument. Funkcja recvfrom() domyśl-
nie blokuje swoje działanie w oczekiwaniu na dane, jeśli nie zostały jeszcze wysłane. Zachowanie to
można zmienić podając jako czwarty argument jej wywołania odpowiednią flagę. Jeśli ta flaga nie
jest ustawiona, a funkcja zwróci 0, to będzie to oznaczało, że komunikacja z drugą strona została
zerwana. Po odebraniu danych funkcja zwraca ich rozmiar. W przypadku wyjątku zwraca wartość
-1.
Szczegóły: man recvfrom

htons() - nazwa tej funkcji to skrót od angielskich słów host to network short. Zamienia ona w 16-
-bitowych liczbach naturalnych kolejność bajtów z tej, która obowiązuje lokalnie w urządzeniu
sieciowym, na tę, która obowiązuje w całej sieci (big-endian). Funkcja ta przyjmuje jako argument
liczbę 16-bitową i zwraca tę samą liczbę, przekształcając kolejność jej bajtów na big-endian. Można
za jej pomocą np. przekształcić numer portu.
Szczegóły: man htons

htonl() - funkcja działa podobnie jak htons(), ale przekształca 32-bitową liczbę naturalną, którą po-
biera przez parametr.
Szczegóły: man htonl

ntohs() - nazwa funkcji pochodzi od angielskich słów network to host short. Zmienia ona w 16-bito-
wej liczbie naturalnej kolejność bajtów z tej, która obowiązuje w sieci, na tą, która obowiązuje

3



w urządzeniu sieciowym. Liczbę do przekształcenia pobiera jako argument wywołania, a zwraca
przekształconą liczbę.
Szczegóły: man ntohs

ntohl() - funkcja działa podobnie jak ntohs, ale przekształca 32-bitową liczbę naturalną.
Szczegóły: man ntohl

inet_aton() - funkcja ta przekształca ciąg znaków, zawierający adres IP w wersji 4 wyrażony w notacji
„kropkowej” na ten sam rodzaj adresu wyrażony w postaci pojedynczej liczby 32-bitowej. Funkcja
ta przyjmuje dwa argumenty wywołania. Pierwszym jest adres łańcucha zawierającego adres IP
w notacji „kropkowej”, a drugim wskaźnik na strukturę typu struct in_addr, w polu której
zostanie zapisany adres w postaci pojedynczej liczby. Jeśli konwersja się powiedzie funkcja zwróci
wartość różną od zera, a zero w przeciwnym przypadku.
Szczegóły: man inet_aton

select() - ta funkcja służy do oczekiwania na zmianę stanu pewnej liczby deskryptorów plików lub
gniazd. Przyjmuje ona pięć argumentów: pierwszym argumentem jest maksymalną wartością de-
skryptora w dowolnym zbiorze zwiększoną o jeden, trzy środkowe argumenty są wskaźnikami na
zbiory deskryptorów, a ostatni jest wskaźnikiem na strukturę typu struct timeval. Pierwszy
wskazywany zbiór zawiera deskryptory, badane pod względem gotowości do odczytu, drugi - de-
skryptory badane pod względem gotowości do zapisu, a trzeci - deskryptory badane na ewentual-
ność pojawienia się wyjątków. Zbiory te obsługiwane są z użyciem makr fd_clr, fd_set, fd_zero
i fd_isset. Pierwsze makro usuwa podany deskryptor ze zbioru, drugie dodaje do zbioru, trzecie
zeruje cały zbiór, a czwarte sprawdza, czy deskryptor należy do zbioru i jest wykorzystywane do
sprawdzenia, czy zmienił się stan tego deskryptora. Ostatni argument funkcji select() pozwala
określić czas, po jakim przerwane zostanie badanie gniazd, jeśli ich stan się nie zmienił. W Linuksie
wartość struktury wskazywanej przez ten argument jest dodatkowo modyfikowana, jeśli pojawi się
zmiana stanu któregoś z deskryptorów. Wartość pól tej struktury określa wówczas ile czasu upły-
nęło od wywołania select() do pojawienia się tej zmiany. Funkcja zwraca -1 w przypadku błędu,
0 jeśli upłynął czas oczekiwania i nie pojawiło się żadne zdarzenie (żaden deskryptor nie zmie-
nił stanu) oraz wartość większą od zera oznaczającą ile deskryptorów, spośród badanych, zmieniło
stan, jeśli taka zmiana wystąpiła. Bardziej rozbudowaną funkcją, zbliżoną w działaniu do select()
jest pselect(). Pozwala ona z większą precyzją określić czas zakończenia jej działania, przy czym
nigdy nie modyfikuje argumentu, który określa ten czas. Dodatkowo pozwala ona określić, które
sygnały podczas jej działania zostaną zablokowane.
Szczegóły: man select, man pselect

4.3. Kolejność wywołań funkcji
Opisane w poprzednim podrozdziale funkcje są wywoływane w określonej kolejności w programach

serwerów i klientów, w zależności od tego, z jakich protokołów komunikacyjnych one korzystają. Diagramy
1 oraz 2 przedstawiają typową kolejność wywołań określonych funkcji, odpowiednio, w serwerze i kliencie,
który komunikują się za pomocą protokołu TCP/IP.

socket() bind() listen() accept()

read()

write()

close()

Rysunek 1: Typowa kolejność wywołań funkcji w serwerze korzystającym z protokołu TCP/IP.

Z kolei diagramy 3 i 4 obrazują typową kolejność wywołań określonych funkcji, odpowiednio, w ser-
werze i kliencie, którzy komunikują się z użyciem protokołu udp/ip.

4



socket() connect()

write()

read()

close()

Rysunek 2: Typowa kolejność wywołań funkcji w kliencie korzystającym z protokołu TCP/IP.

socket() bind()

recvfrom()

sendto()

close()

Rysunek 3: Typowa kolejność wywołań funkcji w serwerze korzystającym z protokołu UDP/IP.

socket()

sendto()

recvfrom()

close()

Rysunek 4: Typowa kolejność wywołań funkcji w kliencie korzystającym z protokołu UDP/IP.

5. Przykład
W tym rozdziale zostaną przedstawione kody źródłowe dwóch programów (klienta i serwera), które

komunikują się ze sobą za pomocą gniazd BSD z użyciem protokołu UDP/IP. Klient jednorazowo
przesyła do serwera komunikat (łańcuch znaków), który ten wyświetla na ekranie.

Listing 1 zawiera kod źródłowy programu - klienta. Proszę zwrócić uwagę na liczbę włączonych plików
nagłówkowych. Są one wszystkie niezbędne do prawidłowej kompilacji programu. W kodzie zdefiniowano
również dwie stałe. Pierwsza (wiersz nr 9) określa numer portu, na którym serwer będzie nasłuchiwał
połączenia od klienta. Jest to 1096, który nie jest zajęty przez inne serwery. Drugim jest adres IP serwera
w notacji „kropkowej”. Zapis 127.0.0.1 oznacza adres lokalny komputera, który pozwala zrealizować
tzw. pętlę zwrotną, czyli wszystkie komunikaty wysłane na ten adres z powrotem wracają do komputera.
Dzięki temu można m.in. lokalnie testować aplikacje sieciowe, bez konieczności używania prawdziwej
sieci. W funkcji main() programu tworzone jest gniazdo do komunikacji za pomocą protokołu UDP/IP
i wywoływana jest zdefiniowana w programie funkcja send_message(), a jako argument jej wywołania
przekazywany jest deskryptor utworzonego gniazda. W tej funkcji inicjowane są struktury odpowiedzialne
za zaadresowanie przesyłanej przez gniazdo informacji. Następnie tworzony jest (wiersz nr 25) bufor

5



z komunikatem, który zostanie wysłany do serwera i wywoływana jest funkcja sendto(), która ten
komunikat faktycznie przesyła. Po powrocie do funkcji main() zamykane jest gniazdo i kończone jest
działanie programu.

1 #include<stdio.h>
2 #include<unistd.h>
3 #include<sys/socket.h>
4 #include<sys/types.h>
5 #include<string.h>
6 #include<netinet/ip.h>
7 #include<arpa/inet.h>
8

9 #define SERVER_PORT 1096
10 #define SERVER_IP_ADDRESS "127.0.0.1"
11

12 void send_message(int socket_descriptor)
13 {
14 struct in_addr network_address;
15

16 if(!inet_aton(SERVER_IP_ADDRESS,&network_address))
17 perror("inet_aton");
18

19 struct sockaddr_in server_address = {
20 .sin_family = AF_INET,
21 .sin_port = htons(SERVER_PORT),
22 .sin_addr = network_address
23 };
24

25 const char *message = "Komunikat przesłany przez sieć.";
26 if(sendto(socket_descriptor,message,strlen(message),0,
27 (struct sockaddr *)&server_address,sizeof(server_address))<0)
28 perror("sendto");
29 }
30

31 int main(void)
32 {
33 int socket_descriptor = socket(AF_INET, SOCK_DGRAM, 0);
34 if(socket_descriptor<0)
35 perror("socket");
36

37 send_message(socket_descriptor);
38

39 if(close(socket_descriptor)<0)
40 perror("close");
41 return 0;
42 }

Listing 1: Przykładowy program klienta używającego protokołu udp/ip.

Listing 2 zawiera kod źródłowy programu - serwera. Na jego początku włączane są wszystkie nie-
zbędne do prawidłowej kompilacji i działania nagłówki, następnie (wiersz nr 7) definiowana jest stała
określająca numer portu. Jej wartość jest taka sama jak w programie klienta. W funkcji main() najpierw
tworzone jest gniazdo do komunikacji za pomocą protokołu UDP/IP, a potem wywoływana jest zde-
finiowana w programie funkcja name_socket(), która przyjmuje jako argument wywołania deskryptor
utworzonego gniazda. Zadaniem tej funkcji jest nadanie gniazdu nazwy, poprzez powiązanie go ze struk-
turą lokalnego adresu. Ta struktura jest inicjowana wewnątrz funkcji. Proszę zwrócić uwagę na sposób
inicjacji jej pola sin_addr (wiersz nr 14). Następnie wywoływana jest funkcja bind(), która dokonu-
je opisywanego powiązania. Po powrocie z funkcji name_socket() w funkcji main() wywoływana jest
również zdefiniowana w programie funkcja get_and_print_message(). Jej zadaniem jest odebranie od
klienta wiadomości i wypisanie jej na ekranie. Funkcja ta przyjmuje tylko jeden argument wywołania,
jakim jest deskryptor gniazda. W jej wnętrzu zadeklarowany jest (wiersz nr 24) 512-bajtowy bufor na
nadesłaną przez klienta wiadomość. Deklarowana jest także zmienna na adres klienta (wiersz nr 26)

6



i zmienna na rozmiar tej struktury (wiersz nr 27). Proszę zwrócić uwagę na sposób inicjacji tej ostatniej.
Następnie wywoływana jest funkcja recvfrom(), która odbiera nadesłany komunikat i zapisuje go w bu-
forze. W programie liczba bajtów zwrócona przez tę funkcję zapisywana jest w zmiennej received_bytes.
Służy ona do sprawdzenia poprawności działania recvfrom(), a także do zakończenia nadesłanego cią-
gu znakiem końca łańcucha znaków, który nie jest przesyłany przez sieć. Po tym nadesłany komunikat
jest po prostu wypisywany na ekranie (wiersz nr 34). W funkcji main() jest jeszcze zamykane gniazdo
i kończy się wykonanie programu.

1 #include<stdio.h>
2 #include<unistd.h>
3 #include<sys/types.h>
4 #include<sys/socket.h>
5 #include<netinet/ip.h>
6

7 #define PORT 1096
8

9 void name_socket(int socket_descriptor)
10 {
11 struct sockaddr_in server_address = {
12 .sin_family = AF_INET,
13 .sin_port = htons(PORT),
14 .sin_addr = {INADDR_ANY}
15 };
16

17 if(bind(socket_descriptor,(struct sockaddr*)&server_address,sizeof(server_address))<0)
18 perror("bind");
19 }
20

21 void get_and_print_message(int socket_descriptor)
22 {
23 char buffer[512];
24

25 struct sockaddr_in client_address;
26 socklen_t address_length = sizeof(client_address);
27

28 int received_bytes = recvfrom(socket_descriptor,(void *)buffer,sizeof(buffer),
29 0,(struct sockaddr*)&client_address,&address_length);
30 if(received_bytes<0)
31 perror("recvfrom");
32 else {
33 buffer[received_bytes]='\0';
34 puts(buffer);
35 }
36 }
37

38 int main(void)
39 {
40 int socket_descriptor = socket(AF_INET, SOCK_DGRAM, 0);
41 if(socket_descriptor<0)
42 perror("socket");
43

44 name_socket(socket_descriptor);
45 get_and_print_message(socket_descriptor);
46

47 if(close(socket_descriptor)<0)
48 perror("close");
49 return 0;
50 }

Listing 2: Przykładowy program serwera używającego protokołu udp/ip.

7



Zadania
Uwaga: Programy muszą być napisane z podziałem na funkcje z parametrami oraz muszą sprawdzać,

czy wywoływane przez nie funkcje z api systemu operacyjnego nie sygnalizują wyjątków.
1. Zmodyfikuj przykładowe programy tak, aby serwer odsyłał do klienta komunikat potwierdzający

odebranie komunikatu.

2. Napisz programy, które będą realizował polecenie zawarte w zadaniu pierwszym, ale w oparciu
o protokół TCP/IP.

3. Napisz programy, które prześlą plik o rozmiarze większym od 1 MiB między dwoma komputera-
mi, z użyciem protokołu TCP/IP. Sprawdź, co się stanie, jeśli plik będzie wysyłany w jednym
komunikacie.

4. Napisz programy przesyłające plik o wielkości przekraczającej 1 MiB między dwoma komputerami,
przy użyciu protokołu bezpołączeniowego.

5. Uzupełnij programy z pierwszego zadania tak, aby przesyłały między sobą po 10 komunikatów
oraz dodatkowo wykrywały i retransmitowały zagubione pakiety. Wskazówka: można wykorzystać
w rozwiązaniu obsługę sygnałów, w szczególności sygnał sigalrm.

6. Protokół UDP/IP nie gwarantuje, że komunikaty dotrą do odbiorcy w kolejności, w jakiej zostały
nadane. Napisz programy, które same o to zadbają.

7. Stwórz serwer współbieżny, który będzie obsługiwał połączenia od wielu klientów, również napi-
sanych przez Ciebie - mogą one przesyłać np. pseudolosowe liczby do serwera, który będzie je
wyświetlał na ekranie. Połączenia powinny być obsługiwane przez procesy potomne. Aby uniknąć
tworzenia procesów zombie, proces macierzysty powinien ignorować sygnały o zakończeniu proce-
sów potomnych. Użyj protokołu połączeniowego.

8. Wykonaj polecenie z poprzedniego zadania, używając tym razem wątków zamiast procesów.

9. Stwórz serwer iteracyjny, o takim samym działaniu jak serwer w zadaniu siódmym. Skorzystaj
z funkcji select().

10. W praktyce dosyć często tworzy się serwery, które mają charakterystykę pośrednią między współ-
bieżnym a iteracyjnym. Taki serwer utrzymuje pewną stałą liczbę wątków, które są odpowiedzialne
za obsługę połączeń. Konieczność nawiązania nowego połączenia sprawdza przy pomocy funkcji
select(). Po nawiązaniu komunikacji jej obsługę powierza się pierwszemu wątkowi z puli, który
nie jest zajęty obsługiwaniem innego połączenia. Napisz taki serwer i klientów, którzy będą do
niego wysyłać komunikaty tekstowe, będące kolejnymi wierszami plików tekstowych.

11. Napisz programy, które będą podawały czasy przesyłania kolejnych pakietów przez sieć. Wielkość
pakietu będzie określał użytkownik jako argument wywołania programu klienckiego. Użyj protokołu
UDP/IP.

12. Napisz programy, które będą podawały czasy przesyłania kolejnych pakietów przez sieć. Wielkość
pakietu będzie określał użytkownik jako argument wywołania programu klienckiego. Użyj protokołu
TCP/IP.

13. Stwórz programy, które będą tworzyły strukturę farmer-worker. Farmer będzie rozsyłał liczby
naturalne z przedziału od 2 do 302 do procesów typu worker, z których każdy będzie sprawdzał,
czy otrzymana przez niego liczba jest pierwsza i odsyłał wynik do farmera. Farmer powinien
współpracować z trzema procesami tego typu. Użyj protokołu bezpołączeniowego.

14. Napisz programy, o strukturze klient-serwer, które pozwolą użytkownikom wysyłać do siebie wia-
domości asynchronicznie (tak jak e-mail). Serwer będzie jedynym programem działającym w trybie
ciągłym. Do jego zadań będzie należało rejestrowanie nowych użytkowników, wysyłanie wiadomo-
ści do adresata, jeśli ten nawiąże połączenie oraz odbieranie wiadomości do innych użytkowników.
Klient po uruchomieniu powinien wysłać serwerowi nazwę użytkownika, następnie odebrać wia-
domości, które są dla niego przeznaczone i umożliwić użytkownikowi wysłanie komunikatów do
innych użytkowników.

8


	Usługi sieciowe w Linuksie
	Różnice między protokołem TCP i UDP
	Serwery iteracyjne i współbieżne
	API gniazd BSD
	Struktury danych
	Opis funkcji
	Kolejność wywołań funkcji

	Przykład

