Systemy operacyjne 1
Laboratorium 10
,Gniazda BSD - protokoty internetowe”
(dwa tygodnie)

dr inz. Arkadiusz Chrobot

17 grudnia 2025

Wstep

System Linux, ktéry jest kompatybilny z Uniksem, podobnie jak wszystkie inne systemy z nim zgodne
posiada mechanizmy odpowiedzialne z obstuge komunikacji przy pomocy sieci komputerowej. Do nawia-
zywania polaczen oraz transmisji danych stuza aplikacjom uzytkowym w tym systemie gniazda BSD,
ktére po raz pierwszy zostaly wprowadzone w wersji BSD systemu Unix. Jest to na tyle udane rozwia-
zanie, ze w chwili obecnej gniazda te stanowia standard dla komunikacji lokalnej i zdalnej w wiekszosci
wspolczesnych systemow operacyjnych. W tej instrukcji zawarte sg informacje na temat obstugi gniazd
BSD. Rozdzial 1 opisuje ogdlnie mozliwosci obstugi komunikacji sieciowej w systemie Linux. Rozdzial
2 opisuje réznice miedzy protokotami transmisyjnymi sieci Internet. Rozdziat 3 zawiera informacje o ser-
werach iteracyjnych i wspolbieznych. Rozdzial 4 zawiera opis API gniazd BSD oraz sposobu jego uzycia.
Rozdzial 5 zawiera kody zréodlowe dwdch programéw (serwera i klienta) komunikujacych sie za pomoca
gniazd BSD z uzyciem protokolu UPD /IP. Instrukcje koniczy zestaw zadari do samodzielnego wykonania
na zajeciach laboratoryjnych.

1. Ustugi sieciowe w Linuksie

Gniazda BSD (nazwa pochodzi od wersji BSD Uniksa, istnieja réwniez gniazda TLI pochodzace
z Systemu V| ale nie sa one uzywane w Linuksie) stanowia API dla protokoléw komunikacyjnych stoso-
wane we wszystkich systemach operacyjnych, ktére umozliwiaja prace w sieci. W przypadku systeméw
uniksowych umozliwiaja nie tylko prace w $rodowisku rozproszonym, ale rowniez lokalna komunika-
cje miedzy procesami stanowigc uzupelnienie mechanizméw opisanych we weze$niejszych instrukcjach.
Dzigki gniazdom mozna pracowaé z protokotami nalezacymi do réznych dziedzin np.: Uniksa, Internetu
i Xerox NS. Dodatkowo mozliwa jest praca zaréwno z protokotami polaczeniowymi, jak i bezpolaczenio-
wymi.

2. Roéznice miedzy protokolem TCP i UDP

W dziedzinie Internetu aplikacje sieciowe wykorzystuja najczesciej jeden z dwdch najpopularniejszych
protokoléw warstwy transportowej: TCP lub UDP. Za pomoca pierwszego dane sa wysylane w postaci
strumienia. Ten protoké? jest protokotem potaczeniowym, zachowuje kolejnos¢ wysytanych komunikatéw
po stronie odbiorcy oraz nadzoruje przebieg transmisji dbajac o retransmisje zagubionych i znieksztalco-
nych pakietow. Nie ma w nim ograniczenia na rozmiar wysylanych danych. W niektérych zastosowaniach
moze si¢ jednak okazaé zbyt powolny. Mozna wtedy zamiast niego zastosowaé protokél UDP. Jest on
protokolem bezpolaczeniowym. Jednorazowo mozna za pomoca tego protokolu wystaé dane o wielkosci
mniejszej od 64 KiB. Protokol ten nie zapewnia retransmisji danych, a przypadki znieksztalcenia lub
zagubienia pakietéw nalezy obstugiwaé samodzielnie. Jest on jednak zdecydowanie szybszy od proto-
kolu TCP. Pakiety obu protokoléw sa ,opakowywane” w komunikaty protokotu IP, stad najczesciej
w literaturze pojawiaja si¢ nazwy TCP/IP i UDP/IP.

3. Serwery iteracyjne i wspolbiezne

Aplikacje sieciowe mozna podzielié na dwie kategorie: klientéw i serwery'. Zadaniem serweréw jest
wykonywanie ustug, o ktére prosza klienty?. Obstuga zadan klientéw moze przebiegaé w sposéb sekwen-
cyjny (iteracyjny) lub wspoibiezny. W pierwszym przypadku serwer nawiazuje polaczenie z klientem, re-
alizuje jego prosbe, wysyla odpowiedz i wraca do oczekiwania na potaczenia z innymi klientami. Podczas
realizacji zadania klienta zaden inny klient nie jest w stanie potaczy¢ sie z serwerem. Serwer wspo6tbiezny
po nawiazaniu polaczenia z klientem tworzy proces potomny (lub nowy watek), ktéry obstuguje prosbe
klienta, a proces macierzysty oczekuje na potaczenia od innych klientéw.

W terminologii uniksowej nazywane demonami.
2To nie literéwka. W jezyku polskim wprowadzono dwie odmiany liczby mnogiej wyrazu ,klient”, aby odréznié¢ ludzi od
programow.

4. API gniazd BSD

Ta czesé instrukeji zawiera opis struktur danych i funkcji zwiazanych z obshuga gniazd BSD.

4.1. Struktury danych

Strukture wysytanych przez gniazdo danych, czyli protokol wyzszego rzedu, osadzony na protokole
transmisji okresla uzytkownik. Aby jednak nawigzaé¢ polaczenie nalezy zadeklarowaé¢ i wypelnié¢ odpo-
wiednie pola zmiennej typu struct sockaddr_in, czyli pole sin_family, ktéremu w przypadku pro-
tokoléw internetowych nadaje si¢ warto$é stalej ar_ineTr (skrét od Address Family), pole sin_port,
ktéremu nadaje sie numer portu® oraz pole sin_addr, ktéremu przypisuje sie strukture typu struct
in_addr zawierajaca adres internetowy drugiej strony potaczenia. Jesli struktura struct sockaddr_in
jest uzywana przez serwer do nazwania jego wlasnego gniazda, przez ktére bedzie nawiazywal potaczenie
z klientem, to pole sin_addr tej struktury moze by¢ zainicjowane poprzez nadanie mu wartosci stalej
0 nazwie INADDR_ANY. Inicjacja tego pola bedzie jeszcze opisywana w dalszej czedci instrukcji. Wiecej
informacji na temat tej struktury mozna uzyskaé przy pomocy nastepujacego polecenia:
man 7 ip

4.2. Opis funkcji

W tym podrozdziale opisane zostana tylko funkcje niezbedne do wykonania wigkszosci zadan zawar-
tych w instrukecji. Osoby, ktére chca dokladniej zapoznaé sie z tematyka pisania oprogramowania dla
sieci komputerowych powinny skorzystaé¢ z innych zrédel, jak np.: klasyczna juz ksiazka W. Richarda
Stevensa ,,Programowanie zastosowan sieciowych w systemie Unix”.

socket () - funkcja ta zwraca deskryptor gniazda, poprzez ktére bedzie odbywala sie komunikacja mie-
dzy stacjami roboczymi w sieci. Mozna o niej mysle¢ jako o funkcji open() przeznaczonej dla urza-
dzeni sieciowych. Pierwszy pobierany przez nia argument oznacza rodzine protokotéw (AF_inNeT dla
protokotéw Internetu), drugi rodzaj gniazda (polaczeniowe, inaczej strumieniowe - SOCK_STREAM,
bezpolaczeniowe, inaczej datagramowe - SOCK_DGRAM), natomiast ostatni okrela, ktérego konkret-
nie protokotu bedziemy uzywaé (w wypadku protokoléw internetowych jest zazwyczaj réwny 0).
Funkcja wykorzystywana jest zaréwno przez oprogramowanie serwera jak i klienta. W przypadku
niepowodzenia utworzenia gniazda zwraca ona wartos¢ -1.
Szczegdly: man socket

bind () - funkcja ta nadaje gniazdu nazwe. Zazwyczaj wywoluje ja serwer przed rozpoczeciem komunika-
cji z klientem, ale moze jej rowniez uzy¢ klient celem zarezerwowania lub sprawdzenia adresu. Jako
argumenty bind () pobiera deskryptor gniazda, strukture zawierajaca adres komputera (patrz: man
unix, man 7 ip i podrozdzial 4.1), oraz rozmiar tej struktury. Jesli dzialanie funkcji sie powiedzie,
to zwroci ona warto$é 0, w przeciwnym przypadku -1.
Szczegdly: man 2 bind

connect () - funkcja ta jest wykorzystywana tylko przez klienta i sluzy do ustanowienia polaczenia
z serwerem. Zazwyczaj uzywana w komunikacji przy pomocy protokotu polaczeniowego, ale moze
by¢ takze uzyta w komunikacji za pomoca protokotu bezpotaczeniowego. Przyjmuje ona jako argu-
menty: deskryptor gniazda, wskaznik na strukture z adresem serwera i rozmiar tej struktury. Jesli
nawiazanie polaczenia sie powiedzie, to zwraca wartosé 0, a jesli nie to zwraca -1.
Szczegbly: man connect

listen() - ta funkcja jest uzywana przez serwer pracujacy z protokotem polaczeniowym do zgloszenia, ze
bedzie on nastuchiwat zadan polaczenia. Jesli serwer odbierze takie zadanie, to umieéci je w kolejce.
Funkcja listen() przyjmuje dwa argumenty: deskryptor gniazda oraz liczbe zadan, ktére system
moze umiesci¢é w kolejce zanim zostana one zaakceptowane (szczegdly: man tcp). Jedli funkcja
wykona sie prawidlowo, to zwréci 0, a =1 w przeciwnym przypadku.
Szczegdly: man listen

3Nalezy wiedzieé, ze w Linuksie porty od 1 do 1023 sg zarezerwowane dla uzytkownika root. Porty o wyzszych numerach
moga by¢ uzywane przez inne demony. Aby sprawdzié¢ ktére porty sg zarezerwowane, a ktére nie mozna zajrzeé do pliku
tekstowego /etc/services.

accept () - funkcja ta jest wywolywana przez oprogramowanie serwera pracujacego z protokotem po-
taczeniowym. Stuzy ona do przyjmowania polaczen. Jej wywolanie wymaga trzech argumentow.
Pierwszym jest deskryptor gniazda, drugim wskaznik do struktury, do ktérej bedzie zapisany adres
klienta, a trzecim wskaznik na zmienna, w ktérej zostanie zapisany rozmiar tej struktury. Funkcja
pobiera pierwsze zadanie z kolejki i tworzy dla niego gniazdo, o takich samych wlasciwosciach jak
gniazdo, do ktérego nadeszio zadanie. Jesli kolejka jest pusta, to accept () wstrzymuje dziatanie
do momentu, az pojawi sie w kolejce jakies zadanie. W serwerach wspotbieznych gniazdo, ktorego
deskryptor zwraca accept() jest obstugiwane przez proces potomny (lub nowy watek). W przy-
padku niepowodzenia dzialania funkcja zwraca warto$é¢ -1.
Szczegdly: man 2 accept

read(), write() - funkcje te stuza do odbierania i wysytania danych w protokole polaczeniowym.
Dziataja one troche inaczej, niz w przypadku plikow. Zamiast deskryptora pliku do ich wywotania
przekazuje si¢ deskryptor gniazda. Jesli przez gniazdo potaczeniowe sa wysytane dane o rozmiarze
przekraczajacym rozmiar bufora, to wprawdzie sa wysylane jako jeden strumien, ale moga ulec
segmentacji. Oznacza to, ze funkcja read () moze odebra¢ mniej danych, niz okresliliémy to w jej
wywotaniu. Nie jest to blad, nalezy po prostu powtoérzy¢ jej dzialanie. Sposéb ich wywolywania
zostal opisany w poprzedniej instrukcji.

close() - funkcja ta stuzy do zamykania gniazda po zakonczeniu komunikacji, niezaleznie od tego jakim
protokotem sie postugujemy. Sposob jej wywotania zostal opisany w poprzedniej instrukcji. W przy-
padku gniazd jako argument jej wywotania przekazuje si¢ deskryptor gniazda zamiast deskryptora
pliku.

sendto() - funkcja ta stuzy do wysytania informacji przez gniazdo zaréwno w protokole bezpotaczenio-
wymi, jak i polaczeniowym, choé¢ czesciej jest stosowana w tym pierwszym. Przyjmuje ona sze$é
argumentéw wywolania: deskryptor gniazda, wskaznik na bufor wysylanych danych, rozmiar bu-
fora, flage (najczesciej 0), wskaZznik na strukture w ktérej zapisany jest adres przeznaczenia oraz
rozmiar tej struktury. Funkcja zwraca liczbe przestanych bajtéow lub -1 jesli wystapi wyjatek.
Szczegdly: man sendto

recvfrom() - funkcja ta shuzy do odbioru danych z gniazda zaréwno w protokole bezpolaczeniowym jaki
i polaczeniowym, choé¢ czeéciej jest stosowana w tym pierwszym. Liczba i znaczenie argumentéw
jest podobne jak w przypadku funkcji sendto(). Réznica polega na tym, ze do bufora na dane sa
zapisywane odebrane informacje, a w przedostatnim argumencie zapisywany jest adres strony pota-
czenia, ktora te informacje nadata. Szosty argument funkcji jest wskaznikiem na zmienna, w ktorej
bedzie zapisana wielko$¢ odebranej struktury adresu. Wartosé poczatkowa tej zmiennej powinna
by¢ réwna rozmiarowi zmiennej wskazywanej przez piaty argument. Funkcja recvfrom() domysl-
nie blokuje swoje dzialanie w oczekiwaniu na dane, jesli nie zostaly jeszcze wystane. Zachowanie to
mozna zmieni¢ podajac jako czwarty argument jej wywolania odpowiednig flage. Jesli ta flaga nie
jest ustawiona, a funkcja zwrdci 0, to bedzie to oznaczalo, ze komunikacja z druga strona zostala
zerwana. Po odebraniu danych funkcja zwraca ich rozmiar. W przypadku wyjatku zwraca wartosé
-1.
Szczegbdly: man recvfrom

htons() - nazwa tej funkcji to skrét od angielskich stow host to network short. Zamienia ona w 16-
-bitowych liczbach naturalnych kolejnos¢ bajtéw z tej, ktéra obowiazuje lokalnie w urzadzeniu
sieciowym, na te, ktéra obowiazuje w calej sieci (big-endian). Funkcja ta przyjmuje jako argument
liczbe 16-bitowa i zwraca te sama liczbe, przeksztalcajac kolejnosé jej bajtéw na big-endian. Mozna
za jej pomoca np. przeksztalci¢é numer portu.

Szczegdly: man htons

htonl() - funkcja dziala podobnie jak htons (), ale przeksztalca 32-bitowg liczbe naturalna, ktéra po-
biera przez parametr.
Szczegdly: man htonl

ntohs() - nazwa funkcji pochodzi od angielskich stéw network to host short. Zmienia ona w 16-bito-
wej liczbie naturalnej kolejnosé bajtéw z tej, ktéra obowiagzuje w sieci, na ta, ktéra obowiazuje

w urzadzeniu sieciowym. Liczbe do przeksztalcenia pobiera jako argument wywotania, a zwraca
przeksztatcong liczbe.
Szczegbdly: man ntohs

ntohl() - funkcja dziala podobnie jak ntohs, ale przeksztatca 32-bitowa liczbe naturalna.
Szczegdly: man ntohl

inet_aton() - funkcja ta przeksztalca ciag znakow, zawierajacy adres IP w wersji 4 wyrazony w notacji
»kropkowej” na ten sam rodzaj adresu wyrazony w postaci pojedynczej liczby 32-bitowej. Funkcja
ta przyjmuje dwa argumenty wywolania. Pierwszym jest adres lancucha zawierajacego adres IP
w notacji ,kropkowej”, a drugim wskaznik na strukture typu struct in_addr, w polu ktorej
zostanie zapisany adres w postaci pojedynczej liczby. Jesli konwersja sie powiedzie funkcja zwroci
wartos¢ rézna od zera, a zero w przeciwnym przypadku.
Szczegdly: man inet_aton

select () - ta funkcja stuzy do oczekiwania na zmiane stanu pewnej liczby deskryptorow plikow lub
gniazd. Przyjmuje ona pie¢ argumentéw: pierwszym argumentem jest maksymalna wartoécig de-
skryptora w dowolnym zbiorze zwigkszona o jeden, trzy srodkowe argumenty sa wskaznikami na
zbiory deskryptoréw, a ostatni jest wskaznikiem na strukture typu struct timeval. Pierwszy
wskazywany zbior zawiera deskryptory, badane pod wzgledem gotowosci do odczytu, drugi - de-
skryptory badane pod wzgledem gotowosci do zapisu, a trzeci - deskryptory badane na ewentual-
nos¢ pojawienia si¢ wyjatkoéw. Zbiory te obstugiwane sa z uzyciem makr FD_CLR, FD_SET, FD_ZERO
i FD_I1SSET. Pierwsze makro usuwa podany deskryptor ze zbioru, drugie dodaje do zbioru, trzecie
zeruje caly zbior, a czwarte sprawdza, czy deskryptor nalezy do zbioru i jest wykorzystywane do
sprawdzenia, czy zmienil sie stan tego deskryptora. Ostatni argument funkcji select() pozwala
okresli¢ czas, po jakim przerwane zostanie badanie gniazd, jesli ich stan sie nie zmienit. W Linuksie
wartos¢ struktury wskazywanej przez ten argument jest dodatkowo modyfikowana, jesli pojawi sie
zmiana stanu ktérego$ z deskryptordéw. Wartos¢ pél tej struktury okresla wowczas ile czasu uply-
neto od wywotania select () do pojawienia sie tej zmiany. Funkcja zwraca -1 w przypadku btedu,
0 jedli uplynal czas oczekiwania i nie pojawilo sie zadne zdarzenie (zaden deskryptor nie zmie-
nil stanu) oraz warto$é wieksza od zera oznaczajaca ile deskryptoréw, sposréd badanych, zmienito
stan, jesli taka zmiana wystapita. Bardziej rozbudowang, funkcja, zblizona w dzialaniu do select ()
jest pselect (). Pozwala ona z wigksza precyzja okresli¢ czas zakoriczenia jej dziatania, przy czym
nigdy nie modyfikuje argumentu, ktéry okresla ten czas. Dodatkowo pozwala ona okresli¢, ktore
sygnaly podczas jej dziatania zostang zablokowane.
Szczegdly: man select, man pselect

4.3. Kolejnos¢ wywotan funkcji

Opisane w poprzednim podrozdziale funkcje sa wywolywane w okreélonej kolejnosci w programach
serweréw i klientow, w zaleznosci od tego, z jakich protokotéw komunikacyjnych one korzystaja. Diagramy
1 oraz 2 przedstawiaja typowa kolejno$¢ wywolan okreslonych funkcji, odpowiednio, w serwerze i kliencie,
ktory komunikuja sie za pomoca protokotu TCP /IP.

(socket ())ﬁ@ind())ﬁ(listen())—»@ccept ())—»Q Q—>

Rysunek 1: Typowa kolejno$¢ wywolan funkcji w serwerze korzystajacym z protokotu TCP /IP.

Z kolei diagramy 3 i 4 obrazuja typowa kolejnos¢ wywotan okreslonych funkcji, odpowiednio, w ser-
werze 1 kliencie, kt6rzy komunikuja sie z uzyciem protokotu UDP/1P.

wrlte()

o

(socket ())—>(connect O O O—>

N

Rysunek 2: Typowa kolejno$é wywotan funkcji w kliencie korzystajacym z protokotu TCP /IP.

(@m20)— @m0 () O @m0

Rysunek 3: Typowa kolejnoéé wywolan funkcji w serwerze korzystajacym z protokotu UDP /IP.

a0 O) O—@

Rysunek 4: Typowa kolejno$¢ wywolan funkeji w kliencie korzystajacym z protokotu UDP /IP.

5. Przyktad

W tym rozdziale zostana przedstawione kody Zrédlowe dwéch programéw (klienta i serwera), ktére
komunikuja sie ze soba za pomoca gniazd BSD z uzyciem protokotu UDP/IP. Klient jednorazowo
przesyla do serwera komunikat (taficuch znakéw), ktéry ten wy$wietla na ekranie.

Listing 1 zawiera kod zrédlowy programu - klienta. Prosze zwréci¢ uwage na liczbe wtaczonych plikow
nagltéwkowych. Sg one wszystkie niezbedne do prawidtowej kompilacji programu. W kodzie zdefiniowano
réwniez dwie stale. Pierwsza (wiersz nr 9) okredla numer portu, na ktérym serwer bedzie nastuchiwal
polaczenia od klienta. Jest to 1096, ktéry nie jest zajety przez inne serwery. Drugim jest adres IP serwera
w notacji ,kropkowej”. Zapis 127.0.0.1 oznacza adres lokalny komputera, ktory pozwala zrealizowaé
tzw. petle zwrotna, czyli wszystkie komunikaty wyslane na ten adres z powrotem wracaja do komputera.
Dzigki temu mozna m.in. lokalnie testowaé aplikacje sieciowe, bez koniecznosci uzywania prawdziwej
sieci. W funkcji main() programu tworzone jest gniazdo do komunikacji za pomoca protokotu UDP /IP
i wywolywana jest zdefiniowana w programie funkcja send_message (), a jako argument jej wywolania
przekazywany jest deskryptor utworzonego gniazda. W tej funkcji inicjowane sg struktury odpowiedzialne
za zaadresowanie przesylanej przez gniazdo informacji. Nastepnie tworzony jest (wiersz nr 25) bufor

©® N o A W N

©

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

z komunikatem, ktory zostanie wystany do serwera i wywolywana jest funkcja sendto(), ktora ten
komunikat faktycznie przesyla. Po powrocie do funkcji main() zamykane jest gniazdo i konczone jest
dzialanie programu.

#include<stdio.h>
#include<unistd.h>
#include<sys/socket.h>
#include<sys/types.h>
#include<string.h>
#include<netinet/ip.h>
#include<arpa/inet.h>

#define SERVER_PORT 1096
#define SERVER_IP_ADDRESS "127.0.0.1"

void send_message(int socket_descriptor)
{

struct in_addr network_address;

if (!inet_aton (SERVER_IP_ADDRESS,&network_address))
perror("inet_aton");

struct sockaddr_in server_address = {
.sin_family = AF_INET,
.sin_port = htons(SERVER_PORT),
.sin_addr = network_address

78

const char *message = "Komunikat przestany przez siec.";
if (sendto(socket_descriptor,message,strlen(message),0,
(struct sockaddr *)&server_address,sizeof (server_address))<0)
perror("sendto");

}

int main(void)
{
int socket_descriptor = socket(AF_INET, SOCK_DGRAM, 0);
if (socket_descriptor<0)
perror("socket");

send_message (socket_descriptor) ;
if (close(socket_descriptor)<0)

perror("close");
return O;

Listing 1: Przyktadowy program klienta uzywajacego protokotu UDP/IP.

Listing 2 zawiera kod zrédtowy programu - serwera. Na jego poczatku wlaczane sa wszystkie nie-
zbedne do prawidlowej kompilacji i dzialania nagléwki, nastepnie (wiersz nr 7) definiowana jest stala
okredlajaca numer portu. Jej wartos¢ jest taka sama jak w programie klienta. W funkcji main() najpierw
tworzone jest gniazdo do komunikacji za pomoca protokotu UDP/IP, a potem wywolywana jest zde-
finiowana w programie funkcja name_socket (), ktéra przyjmuje jako argument wywolania deskryptor
utworzonego gniazda. Zadaniem tej funkcji jest nadanie gniazdu nazwy, poprzez powiazanie go ze struk-
tura lokalnego adresu. Ta struktura jest inicjowana wewnatrz funkcji. Prosze zwrécié uwage na sposob
inicjacji jej pola sin_addr (wiersz nr 14). Nastepnie wywolywana jest funkcja bind(), ktéra dokonu-
je opisywanego powiazania. Po powrocie z funkcji name_socket () w funkcji main() wywolywana jest
rowniez zdefiniowana w programie funkcja get_and_print_message (). Jej zadaniem jest odebranie od
klienta wiadomos$ci i wypisanie jej na ekranie. Funkcja ta przyjmuje tylko jeden argument wywolania,
jakim jest deskryptor gniazda. W jej wnetrzu zadeklarowany jest (wiersz nr 24) 512-bajtowy bufor na
nadestana przez klienta wiadomo$é. Deklarowana jest takze zmienna na adres klienta (wiersz nr 26)

i zmienna na rozmiar tej struktury (wiersz nr 27). Prosze zwrécié uwage na sposéb inicjacji tej ostatnie;j.
Nastepnie wywolywana jest funkcja recvfrom(), ktora odbiera nadestany komunikat i zapisuje go w bu-
forze. W programie liczba bajtéw zwrdcona przez te funkcje zapisywana jest w zmiennej received_bytes.
Stuzy ona do sprawdzenia poprawnoéci dzialania recvfrom(), a takze do zakonczenia nadestanego cia-
gu znakiem konca tancucha znakow, ktéry nie jest przesylany przez sie¢. Po tym nadestany komunikat
jest po prostu wypisywany na ekranie (wiersz nr 34). W funkcji main() jest jeszcze zamykane gniazdo

© 0 N O U A W N e

i koniczy sie wykonanie programu.

#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/ip.h>

#define PORT 1096

void name_socket(int socket_descriptor)
{
struct sockaddr_in server_address = {
.sin_family = AF_INET,
.sin_port = htons(PORT),
.sin_addr = {INADDR_ANY}
78

if (bind(socket_descriptor, (struct sockaddr*)&server_address,sizeof (server_address))<0)
perror("bind");

}

void get_and_print_message(int socket_descriptor)

{
char buffer[512];

struct sockaddr_in client_address;
socklen_t address_length = sizeof (client_address);

int received_bytes = recvfrom(socket_descriptor, (void *)buffer,sizeof (buffer),
0, (struct sockaddr*)&client_address,&address_length);
if (received_bytes<0)
perror("recvfrom") ;
else {
buffer[received_bytes]='\0";
puts(buffer) ;

}

int main(void)
{
int socket_descriptor = socket(AF_INET, SOCK_DGRAM, 0);
if (socket_descriptor<0)
perror("socket") ;

name_socket (socket_descriptor) ;
get_and_print_message (socket_descriptor);

if (close(socket_descriptor)<0)
perror("close");
return O;

Listing 2: Przykladowy program serwera uzywajacego protokotu upp/1p.

Zadania

UWAGA: PROGRAMY MUSZA BYC NAPISANE Z PODZIALEM NA FUNKCJE Z PARAMETRAMI ORAZ MUSZA SPRAWDZAC,
CZY WYWOLYWANE PRZEZ NIE FUNKCJE Z API SYSTEMU OPERACYJNEGO NIE SYGNALIZUJA WYJATKle.

1. Zmodyfikuj przykladowe programy tak, aby serwer odsylal do klienta komunikat potwierdzajacy
odebranie komunikatu.

2. Napisz programy, ktére beda realizowal polecenie zawarte w zadaniu pierwszym, ale w oparciu
o protokét TCP/IP.

3. Napisz programy, ktore przesla plik o rozmiarze wiekszym od 1 MiB miedzy dwoma komputera-
mi, z uzyciem protokotu TCP/IP. Sprawdz, co sie stanie, jesli plik bedzie wysylany w jednym
komunikacie.

4. Napisz programy przesytajace plik o wielkosci przekraczajacej 1 MiB miedzy dwoma komputerami,
przy uzyciu protokotu bezpotaczeniowego.

5. Uzupelnij programy z pierwszego zadania tak, aby przesytaly miedzy soba po 10 komunikatéw
oraz dodatkowo wykrywaly i retransmitowaly zagubione pakiety. Wskazéwka: mozna wykorzystaé
w rozwiazaniu obstuge sygnaléw, w szczegdlnoéci sygnal s1caLRM.

6. Protok6l! UDP /IP nie gwarantuje, ze komunikaty dotra do odbiorcy w kolejnosci, w jakiej zostaly
nadane. Napisz programy, ktére same o to zadbaja.

7. Stworz serwer wspotbiezny, ktéry bedzie obstugiwal polaczenia od wielu klientéw, réwniez napi-
sanych przez Ciebie - moga one przesyla¢ np. pseudolosowe liczby do serwera, ktory bedzie je
wyswietlal na ekranie. Polaczenia powinny by¢ obstugiwane przez procesy potomne. Aby uniknaé
tworzenia proceséw zombie, proces macierzysty powinien ignorowac¢ sygnaly o zakonczeniu proce-
sow potomnych. Uzyj protokolu polaczeniowego.

8. Wykonaj polecenie z poprzedniego zadania, uzywajac tym razem watkdéw zamiast proceséw.

9. Stwérz serwer iteracyjny, o takim samym dziataniu jak serwer w zadaniu siédmym. Skorzystaj
z funkcji select ().

10. W praktyce dosy¢ czesto tworzy sie serwery, ktére maja charakterystyke poérednia miedzy wspol-
bieznym a iteracyjnym. Taki serwer utrzymuje pewna stala liczbe watkéw, ktore sa odpowiedzialne
za obstuge polaczen. Koniecznoé¢ nawiagzania nowego polaczenia sprawdza przy pomocy funkcji
select (). Po nawiazaniu komunikacji jej obstuge powierza si¢ pierwszemu watkowi z puli, ktéry
nie jest zajety obshugiwaniem innego potaczenia. Napisz taki serwer i klientéw, ktérzy beda do
niego wysylaé¢ komunikaty tekstowe, bedace kolejnymi wierszami plikéw tekstowych.

11. Napisz programy, ktére beda podawaly czasy przesylania kolejnych pakietow przez sie¢. Wielkos¢
pakietu bedzie okreélal uzytkownik jako argument wywotania programu klienckiego. Uzyj protokotu
UDP/IP.

12. Napisz programy, ktére beda podawaly czasy przesylania kolejnych pakietéw przez sie¢. Wielkosé
pakietu bedzie okreslal uzytkownik jako argument wywolania programu klienckiego. Uzyj protokolu
TCP/IP.

13. Stworz programy, ktore beda tworzyly strukture farmer-worker. Farmer bedzie rozsylal liczby
naturalne z przedzialu od 2 do 302 do proceséw typu worker, z ktérych kazdy bedzie sprawdzal,
czy otrzymana przez niego liczba jest pierwsza i odsylal wynik do farmera. Farmer powinien
wspolpracowaé z trzema procesami tego typu. Uzyj protokotu bezpotaczeniowego.

14. Napisz programy, o strukturze klient-serwer, ktére pozwolg uzytkownikom wysytac¢ do siebie wia-
domosci asynchronicznie (tak jak e-mail). Serwer bedzie jedynym programem dzialajacym w trybie
cigglym. Do jego zadan bedzie nalezalo rejestrowanie nowych uzytkownikéw, wysytanie wiadomo-
Sci do adresata, jesli ten nawiaze polaczenie oraz odbieranie wiadomosci do innych uzytkownikéw.
Klient po uruchomieniu powinien wysta¢ serwerowi nazwe uzytkownika, nastepnie odebraé¢ wia-
domodci, ktore sa dla niego przeznaczone i umozliwi¢ uzytkownikowi wystanie komunikatéow do
innych uzytkownikow.

	Usługi sieciowe w Linuksie
	Różnice między protokołem TCP i UDP
	Serwery iteracyjne i współbieżne
	API gniazd BSD
	Struktury danych
	Opis funkcji
	Kolejność wywołań funkcji

	Przykład

