
Operating Systems 2
Process Management

Arkadiusz Chrobot

Department of Information Systems

March 12, 2025

1 / 27

Outline

Process Descriptor

Process Family

Process Creation

Process Termination

2 / 27

Process Descriptor

Every operating system stores all information about a single process in
a process descriptor. In case of Linux it is a structure of the struct
task_struct type, defined in the linux/sched.h header file. The struc-
ture is allocated by the slab allocator (See second laboratory instruction or
wait until the 10th lecture for an explanation) Its size is about 1.7 KiB.
Some of the members of the structure are pointers to other structures,
equally big or even bigger.

3 / 27

Process Descriptor
Descriptor Location

In the Linux kernel versions older than 2.6 the process descriptor had been
relatively small, and it had been stored at the bottom of the process ker-
nel stack. However, in the 2.6 it became so big that it would occupy too
much space in the stack. Starting with this versions of the kernel, another
structure of the struct thread_info type has replaced the process de-
scriptor at the bottom of the stack, but this structure has a pointer to the
descriptor (see Fig. 1). The thread_info, like the descriptor is allocated
for each process, however it is much smaller than the descriptor, and it
stores low-level data related to the process. For the definition of struct
thread_info type for the x86 cpus family see the Listing 1. It is taken
from the asm/thread_info.h header file for the 4.8 version of the kernel.

4 / 27

Notes

Notes

Notes

Notes

Process Descriptor
Descriptor Location

T
he

st
ac

k
gr

ow
s

th
is

wa
y.

Process Kernel Stack

struct thread_info

T
he

ad
dr

es
se

s
gr

ow
th

is
wa

y.

struct task_struct

Figure 1: The Process Kernel Stack and The Process Descriptor

5 / 27

Process Descriptor
The struct task_info Type Definition

1 struct thread_info {
2 struct task_struct *task; /* main task structure */
3 __u32 flags; /* low level flags */
4 __u32 status; /* thread synchronous flags */
5 __u32 cpu; /* current CPU */
6 };

Listing 1: The definition of struct thread_info for the x86 cpus family
in kernel version 4.8

6 / 27

Process Descriptor
The current macro

The kernel code that runs in the process context, particularly a system
call, usually needs to quickly locate the descriptor of the process that
activated it, because the descriptor stores all the data about that process.
In cpus of the risc organization the address of the descriptor can be
stored in one of the registers, but for cpus of the cisc organization it
has to be calculated on the fly, each time the kernel needs to access the
descriptor. To this end kernel programmers created the current macro,
that returns address of the current process descriptor. In this case the
word “current” should be understood as “the one that activated the kernel
code”. The current macro calls the current_thread_info() function,
which is processor family specific. The implementation of this function for
the family of 32-bit Intel x86 cpus is given in the Listing 2.

7 / 27

Process Descriptor
The current macro

1 movl $-8192, %eax
2 andl %esp, %eax

Listing 2: Part of the definition of the current_thread_info() function
for the x86-32 cpus family

In the line no. 1 the value −8192 is stored in the eax register, which is
32 bits wide. The number 8192 is the size of the stack (two pages, each
of the size of 4096 bytes, which gives 2 × 4096 = 8192). In binary it is
00000000000000000010000000000000. In the code the value is a negative
number, which means that in the two’s complement it is represented as
11111111111111111110000000000000. This value is used in the line no. 2
of the function to mask out the thirteen least-significant bits of the stack
pointer, stored in the esp register. The resulting value is the address of the
bottom of the stack and also the address of the thread_info structure.

8 / 27

Notes

Notes

Notes

Notes

Process Descriptor
The current macro

After calculating the address of the thread_info structure the current
macro needs only to return the value of the task field which stores the
address of the current process descriptor:

current_thread_info()->task
The way of calculating the address of the current process descriptor ex-
plains why the process kernel stack has to be linked with the process de-
scriptor.

9 / 27

Process Descriptor
The current macro

Starting with the version 4.9 of the kernel, the linkage between the process
descriptor and its kernel stack is preserved only for some cpus supported
by the kernel. In case of the x86 cpus family, the pointer to the current
process descriptor is defined as a so-called per-cpu variable, or (in newer
versions) as a member of a structure that is such a variable. Just as
its name suggests, the per-cpu variable is created for each of the cpus
separately, which means that it is local to these cpus. That is convenient
in a case of multiprocessor computer systems1. The current macro needs
only to return the address stored in such a variable.

1In the OS2 course, we assume that the words multiprocessor and multicore mean
the same. The computer system with only one cpu that has only one core will be called
a uniprocessor system.

10 / 27

Process Descriptor
Process Identifier

Among data stored in the process descriptor is the process identifier (pid).
This is a natural number that is assigned by the kernel to every process.
The upper limit of this number is 32 767. This is because even the newest
Linux kernel has to be backward compatible with its older versions and
the original Unix. However, this limit can be changed by a privileged user,
even when the kernel runs. The pid of the value 1 is assigned to a user
process which is an ancestor of all other running processes. Historically
this process is named init, but in newest distributions of Linux it has been
replaced by upstart or systemd. The identifier is stored in the member
of the descriptor named pid of the type pid_t.

11 / 27

Process Descriptor
Process State

Any running process changes its state. Inside the kernel the current state
of the process is described by a special constant, also called a flag, whose
value is stored in the state field of the process descriptor. The number,
the usage and the names of the flags changed in the history of kernel
development, but the most important ones are the following:
task_running describes a process that is either active or ready to run;

the kernel doesn’t differentiate between those two types of
processes,

task_interruptible the process is waiting for some event to happen;
in the Linux terminology it sleeps or it is blocked; it can be
awaken (unblocked) by the awaited event or by any signal,

task_uninterruptible the process is waiting for some event and it can
be awaken only by the event; the state is rarely used, because
it prevents aborting the process,

12 / 27

Notes

Notes

Notes

Notes

https://0xax.gitbooks.io/linux-insides/content/Concepts/linux-cpu-1.html
https://thinkiii.blogspot.com/2014/05/a-brief-introduction-to-per-cpu.html

Process Descriptor
Process State

task_killable the process is waiting for an event; it can be awaken by
the event or any signal that causes its abortion; those signals
are called fatal signals,

task_stopped the process has been stopped by a signal,
task_traced the process is being debugged.
There is also a separated field in the process descriptor for storing the
state of an exited process. The member is called exit_state and can
store values of the following flags:
exit_zombie the process exited, but awaits for its parent process to in-

voke the wait4() system call; there are still the kernel stack
and descriptor in the ram that belong to the process,

13 / 27

Process Descriptor
Process State

exit_dead the process has exited, its parent called the wait4() system
call, but kernel hasn’t finished removing the process yet; it
is used for informing the kernel code running on other cpus
that the process is already being removed.

The state of the current process can be changed with the use of the
set_current_state() function. To change the state of any process the
set_task_state() function can be applied.

14 / 27

Process Family
In Linux the user processes are related to one another. Those connections
create a process family tree. Each process has a parent, with the exception
of the init process (or upstart or systemd), which is the ancestor of all
other processes. Every process can have children. The direct children of
the process are called siblings.
Those family connections are mapped in the process descriptor. For ex-
ample, the address of the descriptor of the process parent is stored in the
parent field of its descriptor. The children field is a list of pointers to
descriptors of the process children (if they exist). The following code gets
the descriptor of the current process parent:

struct task_struct *task = current->parent;
This one could be applied for traversing the list of its children:

1 struct task_struct *task;
2 struct list_head *list;
3

4 list_for_each(list, ¤t->children) {
5 task = list_entry(list, struct task_struct, sibling);
6 }

Listing 3: Kernel code for traversing the list of children

15 / 27

Process Family

The code from the Listing 3 uses the api of generic implementation of
list created by the kernel developers. For explanations see the 3rd lab-
oratory instruction. Descriptors of all user processes are connected in a
circular doubly linked list. The first element of the list is the descriptor
of the init process (or its newest replacements). To traverse the list the
for_each_process(task) macro can be applied (see the 3rd laboratory
instruction for details). The macro next_task(task) returns the address
of the next process descriptor in the list and the prev_task(task) returns
the address of the previous process descriptor in the list. The kernel has
also an array called pidhash, that stores pointers to descriptor of all pro-
cesses. The array has 32 768 elements which means that its indices has the
same values as all possible pids of processes. The array allows the kernel
to quickly obtain the descriptor of any process, provided its pid is known.

16 / 27

Notes

Notes

Notes

Notes

Process Creation

Just like any other Unix-like operating system, Linux allows the user pro-
cesses the create a new process (a child) by calling the fork() or vfork()
function. There is also a Linux-specific function that can be applied for
creating a new process. It is called clone(). Linux uses the copy-on-write
(COW) technique to allow the child and the parent to share their address
spaces as long as it is possible. If any of the processes starts modifying
data, then and only then the address spaces are separated. The parent
and the child get their own data segments, but they still share the text
(code) segment, which is read-only. The family of the exec() functions
allows the process to execute a different program than its parent.
Regardless which user-space function is used for creating a new process
in Linux, the clone() system call is invoked, which calls the do_fork()
kernel function, which in turn invokes the copy_process() function.

17 / 27

Process Creation

The copy_process() function performs the following tasks:
1. creates for the new process the kernel stack and the descriptor,
2. verifies if the new process won’t exceed the limit of the number of

processes for the current user (the owner of the parent process),
3. sets the state of the new process to task_uninterruptible,
4. sets the process flags, obtains a PID for the process,
5. depending on the arguments passed to the invocation of the clone() it

copies from parent or creates anew structures for managing resources
and handling signals,

6. returns pointer to the descriptor of the new process.
After the copy_process() exits the control returns to the do_fork() func-
tion, which eventually awakes and runs the child process.

18 / 27

Process Creation
User-Space Threads

Linux allows user-space processes to create threads, but unlike other oper-
ating systems it doesn’t have any subsystems dedicated to handling those
threads. For Linux, a user-space thread is just a user-process that always
shares majority of its resources, most notably the address space, with
other processes (its parent and, potentially, siblings). To create a user-
space thread the clone() system call has to be invoked with following
arguments:

clone(CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND,0);
while the fork() function calls clone() like this:

clone(SIGCHLD,0);
and the vfork() function like this:

clone(CLONE_VFORK|CLONE_VM|SIGCHLD,0);

19 / 27

Process Creation
Arguments for the clone() System Calls

There are defined several flags in the linux/sched.h header file that serve
as arguments for the clone() system call:
clone_files parent and child share open files,

clone_fs parent and child share file system data,
clone_idletask set pid of the child to 0 (it will be an idle task),
clone_newns create a new namespace for the child,
clone_parent the child grandparent will become its parent,
clone_ptrace continue tracing the child,
clone_settid write the tid (Thread Identifier) back to the user-space,
clone_settls create a new tls (Thread Local Storage) for the child,
clone_sighand parent and child share signal handling,

20 / 27

Notes

Notes

Notes

Notes

Process Creation
Arguments for the clone() System Calls

clone_sysvsem parent and child share System V sem_undo semantics,
clone_thread parent and child belong to the same group of threads,
clone_vfork the parent will sleep until the child wakes it (the child has

been created via vfork() function call),
clone_untraced prevents setting the clone_ptrace flag for the child,
clone_stop start the child in the task_stopped state,
clone_child_cleartid clear the tid for the child,
clone_child_settid set the tid for the child,
clone_parent_settid set the tid for the parent,

clone_vm parent and child share address space.

21 / 27

Process Creation
Kernel-Space Threads

The kernel also can create its threads. Examples of such threads are
ksoftirqd and kworker. Kernel threads don’t have their own address spaces,
they share it with the rest of the kernel. The code of the thread is imple-
mented as a function that usually runs a loop. Most of the kernel threads
exit when the system is shutdown or rebooted or the kernel module where
they are implemented is unloaded form the kernel. A single kernel thread
can be created with the use of the kernel_thread() function. In the 2.6.1
kernel version a patch by Rusty Russell was added that introduces a more
convenient api for managing kernel threads.

22 / 27

Process Creation
Kernel-Space Threads

The api consists of following functions and macros:
kthread_create() creates a new kernel thread and returns pointer to its

descriptor,
kthread_run() creates and activates the new kernel thread,
kthread_stop() sends a signal to the kernel thread suggesting that it

should terminate,
kthread_should_stop() is a function invoked inside the kernel thread

and used as a condition in the thread’s main loop that checks
if the thread should terminate,

kthread_bind() assigns the thread to one or more cpus.
More detailed description of the api is available in the 5th laboratory
instruction.

23 / 27

Process Termination

The process terminates by calling directly or indirectly the exit() function
which invokes the _exit() system call. The system call then calls the
do_exit() function. The latter is responsible for releasing most of the
kernel data structures related to the process and messaging the parent
process that its child has terminated. Only the process descriptor and
kernel stack are left in the computer memory. Those structures are freed
by the release_task() function called by the wait4() system call. The
function decrements the counter of processes belonging to the user, removes
the process descriptor from the pidhash array, from the list of traced
processes (if the process was traced), from the process list, and finally
deallocates the process descriptor and the thread_info structure.

24 / 27

Notes

Notes

Notes

Notes

Process Termination

If the parent of the exited process terminated before its child, the process
would stuck in the zombie state. In this case the exited process is adopted
by the init process (or its replacements) or by a process that belongs
to the same group as the parent of the exited process. The adoption is
performed by the forget_original_parent() function invoked by the
do_exit() function. The former checks the list of processes and the list
of traced processes to find the new parent.

25 / 27

Questions

?

26 / 27

The End

Thank You for Your attention!

27 / 27

Notes

Notes

Notes

Notes

	Process Descriptor
	Process Family
	Process Creation
	Process Termination
	The End

