
Operating Systems 2
Time Management And Timers in Linux

Arkadiusz Chrobot

Department of Information Systems

May 13, 2025

1 / 27



Outline

1 Introduction

2 Time Management

3 Low-Resolution Timers

4 High-Resolution Timers

5 Delaying Execution

2 / 27



Introduction

Introduction

The information about time is vital to the kernel and user-space
applications alike. Some of the kernel functions are activated at spe-
cific moments of time, which means that the kernel needs to measure
the relative time (from a specific moment to another). User appli-
cations, such as databases management systems, web applications
and so on, need information about absolute time, also called wall
time, real-world time or wall-clock time. The kernel has to address
both of this requirements. In this lecture subsystems of the kernel
responsible for time-keeping are described. Also the timers are dis-
cussed.

3 / 27



Time Management

Time Management

The main component that allows the kernel to measure time is a
system timer, which generates an interrupt at a predefined rate.
The interrupt is then handled by a dedicated isr. The hardware
platforms supported by Linux have many devices that can assume
the role of the system timer. Their operation is usually based on
electric impulses generated by a crystal oscillator. For example, in
computers based on x86 cpus there are several types of such devices:
the oldest one called pit (Programmable Interval Timer), the more
modern hpet (High Precision Event Timer), and the (l)apic timer.
Other hardware platforms are equipped with similar devices. Each
of these hardware timers offers a different accuracy and requires a
different handling. In the 2.6 series of kernels, Linux programmers
added an abstraction layer that hides most of these differences and
unifies the handling of these devices.

4 / 27

https://docs.kernel.org/timers/hpet.html


Time Management

Virtual Clocks

The abstraction layer uses hardware timers to create two types of
virtual clocks:
clock sources are monotonically incremented counters with read-

only access,
clock event devices generate an interrupt (event) at a given moment

in the future; they may be programmed to do so only
once, or repetitively.

Each clock source and clock event device has assigned a natural number that
represents its quality. The virtual clock with the highest quality
is chosen as the default clock source or clock event device in the
system. Moreover, the default clock event device assumes the role
of the system timer.

5 / 27

https://docs.kernel.org/timers/timekeeping.html


Time Management

The hz Constant
The frequency of the system timer is specified by the hz constant1.
The timer period is the inverse of this constant. For most hardware
platforms supported by Linux, the value of hz is 100. There are sev-
eral exceptions, like the computer systems based on the x86 cpus.
Initially, the value of hz for these hardware platforms was also 100
(period of 10 ms), but it had been changed in the 2.4 series of ker-
nels to 1000 (period of 1 ms), to address the needs of user-space
multimedia applications. This had resulted in a better resolution
of the timer interrupt and better control over the time-driven ker-
nel activities. Unfortunately, the increased frequency of the system
timer had caused overloading of the cpu with servicing timer inter-
rupts. Moreover, the change had conflicted with handling the ntp
protocol (the Network Time Protocol). That’s why the value of the
hz constant for computers with x86 cpus has been finally set to 250
(period of 4 ms). The issues of multimedia applications have been
resolved with high resolution timers.

1The Hz (hertz) is a unit of frequency. 6 / 27



Time Management

Dynamic Ticks

For hardware platforms that require energy saving support, like em-
bedded systems and laptops, the kernel can be configured to disre-
gard the hz constants and program the system timer to generate
time events when they are needed. Servicing the timer interrupt
each time it occurs costs some energy. If energy saving is a priority
in the computer system, and the kernel and the user-space appli-
cations do not have to do anything within, for example, the next
two seconds, then the kernel will generate the timer interrupt after
2 seconds and not each 4 ms.

7 / 27



Time Management

The jiffies Variable
The number of the system timer interrupts, generated since the
computer system boot up, is stored in the jiffies variable. The
time period when the computer is working (so-called uptime) is equal
to jiffies/hz. In the 32-bit computers, jiffies is 32-bit wide,
and in the 64-bit computers, it is 64-bit wide. Rising the frequency
of the system timer for the 32-bit x86 cpu computers, caused a
problem with jiffies overflow. With the value of hz set to 100,
the jiffies overflows each 497 days. The interval was reduced to
49.7 days, when the value of hz had been changed to 1000. The
issue has been solved with adding a 64-bit wide variable named
jiffies_64. In the 32-bit computers, the jiffies variable overlaps
the 4 least significant bytes of the jiffies_64 variable, while in
64-bit computers these names refer to the same variable. In the
32-bit computers, the jiffies_64 should be read with the help of
the get_jiffies_64() function, which assures indivisible access to
this variable.

8 / 27



Time Management

The jiffies Variable

Kernel programmers have defined four macros that make compar-
ing time expressed with the use of values of the jiffies variable
much easier. They take into account the overflows of that variable.
Each of these macros takes two arguments, which are the values
of the jiffies variable. The time_after macro evaluates to a
nonzero value (true) when the moment referred by its first argument
happens after the moment referred by its second argument. The
time_before macro does the same, if the first argument refers to a
moment that happens before the moment referred by the second ar-
gument. Two others macros (time_after_eq and time_before_eq)
behave similarly, but they also evaluate to a nonzero value when
both arguments refer the same moment in time.

9 / 27



Time Management

user_hz

User-space applications assume that the value of the hz constant
is 100. This is true for most of hardware platforms, with some ex-
ceptions, like the computers based on x86 processors or the dec
Alpha cpus. For such computer systems the kernel programmers
defined a separate constant named user_hz, that is set to the value
of the system timer frequency expected by the user-space appli-
cations. To convert the actual number of timer interrupts to a
number that corresponds to the value of the user_hz constant, the
jiffies_to_clock_t() or the jiffies_64_to_clock_t() functions
are used.

10 / 27



Time Management

The Real-Time Clock

The Linux kernel also tracks the wall-clock time, because the current
date and time are needed by some user-space programs. Usually,
this information is provided by a hardware device2, which is read
by the kernel during the system boot up and then only updated
by the timer interrupt handler. The kernel registers the number of
seconds since the midnight of 1st of January 1970 (the starting point
of so-called Unix Epoch) and the number of nanoseconds since the
beginning of the last second3.
The information about current date and time is provided to user-
space software via the gettimeofday() system call.

2A notable exception are the Raspberry Pi computers, up to version 5.
3This way of storing information about time may cause in the future a prob-

lem, called Y2K38, for 32-bit computers.
11 / 27



Time Management

The Timer Interrupt Servicing Routine

The code responsible for handling the system timer interrupt is
split into two parts: one hardware-dependent and one hardware-
independent. The first one performs such operations as:

servicing the system timer device,
periodically updating the wall-clock device,
invoking the tick_periodic() function, which is an implemen-
tation of the hardware-independent part.

The second one does the following:
updates the jiffies_64 variable,
updates the resource usage by the current process for each of
the CPUs,
updates the variables storing the wall-time,
calculates the average load of system.

12 / 27



Low-Resolution Timers

Low-Resolution Timers

The kernel provides timers (also known as kernel timers or dynamic
timers) that are a way for deferring some operations to be done, for a
given amount of time. These operations are performed in the inter-
rupt context. In other words, timers are another implementations
of bottom halves. There are two types of such timers. The first one
are the low-resolution timers, also known as the timer wheel. The
resolution of these timers is of the length of the system timer period.
They are not suitable for real-time or multimedia applications, but
are good enough for any other purposes. The low-resolution timers
are also not cyclic, which means that when they expire they are not
automatically renewed. A single low-resolution timer is represented
by the stuct timer_list type variable. After initialization of the
structure, the values of two its members have to be set: expires
and function.

13 / 27



Low-Resolution Timers

Low-Resolution Timers

The first one defines the moment when the timer should expire. This
value is expressed in periods of the system timer. The second one
stores the address of a function implementing the operations that
needs to be performed when the timer expires. The prototype of
the function is as follows:

void timer_function(struct timer_list *);
The function gets as an argument the address of the timer structure.
The members of the struct timer_list variable may be initialized
with the help of the timer_setup macro. The timer is activated
with the help of the add_timer() function.

14 / 27



Low-Resolution Timers

Low-Resolution Timers
The moment of expiry for an active timer can be changed with the
use of the mod_timer() function. This is the only safe way of mod-
ifying that value for such a timer. If this function is applied to an
inactive timer it will activate the timer. In uniprocessor systems an
active timer can be removed with the use of the del_timer() func-
tion. On multiprocessor systems the del_timer_sync() function
should be used for this purpose. The timer_pending() function
returns 1 if it is invoked for an active timer or 0 otherwise. The
function that implements operations performed by the timer should
use synchronization devices protecting the shared resources it ac-
cesses. The timer’s function is called by the sortirq handler, when
the timer expires. Before the version 4.8 of Linux kernel the low-
resolution timers were stored in a linked list, that was unsorted, but
divided into five parts. The timers were added to those parts, de-
pending on their expiration time, and then they were moved from
one group to another until they expired.

15 / 27



Low-Resolution Timers

Low-Resolution Timers

The main advantage of this approach was that the average inac-
curacy of low-resolution timers was about half of the system timer
period. Unfortunately, the cost of moving the timers inside the list
was too big. Thomas Gleixner added in the 4.8 version of the kernel
a patch, that eradicates the need for such an operation, but increases
the inaccuracy of the timers. In case of timers with very long expiry
period, it can even be several hours. The internal work of the new
low-resolution timers subsystem4 depends strongly on the value of
the hz constant. Here, it is described for the case when this value
is 250. The kernel creates a hierarchy of 9 arrays (in case of other
values of hz it can be 8). Each of the arrays has 64 elements that
are pointers to a timer list.

4The description is based on the following article: https://lwn.net/Articles/
646950/ and also on the comments in the timer.c file: (https://elixir.bootlin.
com/linux/v4.8/source/kernel/time/timer.c).

16 / 27

https://www.codetd.com/en/article/12241340
https://lwn.net/Articles/646950/
https://lwn.net/Articles/646950/
https://elixir.bootlin.com/linux/v4.8/source/kernel/time/timer.c
https://elixir.bootlin.com/linux/v4.8/source/kernel/time/timer.c


Low-Resolution Timers

Low-Resolution Timers

The highest array in the hierarchy gathers timers with the expiry
period ranging from 0 ms to 255 ms and their resolution (or gran-
ularity) is 4 ms (22 ms). The maximal inaccuracy is also 4 ms.
The resolutions offered by other arrays are as follows: 32 ms (25),
256 ms (28), 2048 ms (211), 214 ms, 217 ms, 220 ms, 223 ms, 226 ms.
The inaccuracy in case of the lowest array in the hierarchy is about
18 h, but the expiry period of timers in that array is ranging from 6
to 49 days. In this case the accuracy of low-resolution timers doesn’t
matter very much, because most of them is used as watchdogs and
usually they are canceled before their expiry. The accuracy of timers
with short expiry period is the same as in the old implementation of
the timer wheel and the operation of moving the timers inside the
list is eliminated.

17 / 27



High-Resolution Timers

High-Resolution Timers
The high-resolution timers offer a nanosecond resolution and are
used in applications for which the low-resolution timers are not
enough, like multimedia processing. Initially, Linux kernel pro-
grammers wanted to replace the low-resolution timers with the high-
resolution timers, but it proved to be a difficult task, so they decided
to incorporate the new timers into the existing code. These timers
are available if the kernel is compiled with their support enabled
and the hardware provides at least two types of clocks that can be
used by them. If the second requirement is not met, then the api
of high-resolution timers will be available, but the timers will offer
the same functionality as low-resolution timers. These two types of
clocks, expected by the implementation of high-resolution timers,
are monotonic and real-time clocks. Both offer a nanosecond reso-
lution, but the first one is always incremented in specific moments
of time and the second can be in some cases decremented, so the
kernel has to compensate for these changes. In a multiprocessor en-
vironment, each cpu usually has one pair of such clocks. 18 / 27



High-Resolution Timers

High-Resolution Timers api
A high-resolution timer is represented by a structure of the struct
hrtimer type. Since 2017, when activated, the timer is added to a
red-black tree or to a queue5. When the hardware clock associated
with high-resolution timers generates an interrupt, the functions of
expired timers in the red-black tree are performed by the isr. Then,
the interrupt handler checks, if the first clock in the queue should
expire. If so, it raises a softirq, that performs the timer function
and also checks the other timers in the queue for expiration. Aside
from members that allow the structure of the struct hrtimer type
to be inserted into a queue or a red-black tree, it also contains the
expires filed, specifying the length of the time period, after which
the timer expires. The unit of this time is a nanosecond. Another
field of this structure is the function member, which stores the
address of a timer function that implements the operations to be
performed by the timer.

5In that year Anna-Maria Gleixner introduced a patch to the kernel that
changed how the high-resolution timers work. 19 / 27



High-Resolution Timers

High-Resolution Timers api
The prototype of this function is as follows:

enum hrtimer_restart my_hrtimer(struct hrtimer *);
The enumeration, that defines the type of values returned by the
function, has two elements: hrtimer_norestart indicating that
the timer won’t be automatically renewed and hrtimer_restart
meaning that the timer will be cyclic. In the latter case, the timer
function has to modify the expires field of the struct hrtimer
structure that points to the function. That’s why the address of
the structure is passed to the function as its argument. Using the
hrtimer_forward() function is the only safe way of modifying that
field. One of the members of the stuct hrtimer structure also
stores the current state of the timer, expressed by one of the follow-
ing constants:
hrtimer_state_inactive the timer is inactive,
hrtimer_state_enqueued the timer is active and awaits to be per-

formed.
20 / 27



High-Resolution Timers

High-Resolution Timers api
Functions that handle the high-resolution timers are similar to those
that handle the low-resolution timers. The hrtimer_init() func-
tion initializes the struct hrtimer structure. One of its arguments
specifies if the value in the expires member expresses absolute
time (in this case, since the computer has been turned on) or rela-
tive time (in this case, since the last activation of the timer). The
hrtimer_start() function activates the timer. There are two func-
tions (hrtimer_cancel() and hrtimer_try_to_cancel()) respon-
sible for canceling the timer. Both return 0 if the timer was inactive
or 1 if it was active. The latter also returns −1 if the timer has been
already performing its function. The timer can be reactivated with
the use of the hrtimer_restart() function. Often the timers are
used for waking up a thread which is sleeping in a waiting queue.
The kernel provides a structure of the struct hrtimer_sleeper
type, that links the timer and the descriptor of the thread and sim-
plifies handling of such a case. For more detailed description of the
timers api please refer to the 7th laboratory instruction. 21 / 27



Delaying Execution

Delaying Execution

The simplest way of delaying an execution of the code in the kernel-
space is to use busy-waiting. In Linux kernel it can be implemented
by reading in a loop the jiffies variable and comparing its cur-
rent value with the desired number of system timer interrupts. To
compare these values the time_before macro can be used, for ex-
ample. The jiffies variable is prepared for such an usage. It is
declared with the use of the volatile keyword, to prevent the com-
piler from storing its value in a register. This would cause the loop
to always read the same value of this variable. The keyword assures
that the value is read directly from the variable, or in other words
directly from the memory. Since busy-waiting is an anti-pattern it
is recommended to invoke the condition_reached() function in-
side the loop, which results in rescheduling the processes. If the
delay should be short, one of the following functions can be used:
udelay(), mdelay(), or ndelay().

22 / 27



Delaying Execution

Delaying Execution

The first one delays the execution for a specific number of microsec-
onds, the second one for a given number of milliseconds and the
last one for a specific number of nanoseconds. All these functions
apply busy-waiting. The udelay() functions performs a loop which
number of iterations is determined by its argument and the number
of so-called BogoMIPS. The last value is set at the boot time and
specifies how many times in a given period of time the cpu can per-
form some instructions. Starting from the 3.6 version of the kernel,
for the computer systems based on the arm cpus, the udelay()
function uses a special hardware timer available in these platforms.
In case of other computer systems its implementation is unchanged.
The mdelay() function just invokes the udelay() function.

23 / 27



Delaying Execution

Delaying Execution
If the delay should be long, then using busy-waiting is not a good
idea. Instead the schedule_timeout() function can be applied,
that puts a thread to sleep and wakes it up after a given period of
time. Before the function is invoked the state of the thread should
be changed to task_uninterruptible or task_interruptible or
task_killable. To simplify the usage of this function the kernel
programmers defined three other functions:
schedule_timeout_killable() sets the task_killable state of

the thread, and calls the schedule_timeout() func-
tion,

schedule_timeout_interruptible() sets the task_interruptible
state of the thread, and calls the schedule_timeout()
function,

schedule_timeout_uninterruptible() sets the thread state to
the task_uninterruptible, and calls
the schedule_timeout() function.

24 / 27



Delaying Execution

Delaying Execution

Finally, the struct hrtimer_sleeper structure and high-resolution
timers can be used for delaying the execution of a thread.

25 / 27



The End

Questions

?

26 / 27



The End

The End

Thank You for Your attention!

27 / 27


	Introduction
	Time Management
	Low-Resolution Timers
	High-Resolution Timers
	Delaying Execution
	The End

