
Operating Systems 2
Bottom Halves

Arkadiusz Chrobot

Department of Information Systems

April 15, 2024

1 / 24



Outline

1 Introduction

2 Softirqs

3 Tasklets

4 Work Queues

2 / 24



Introduction

Introduction
It was stated in the previous lecture that modern operating systems
split the hardware interrupt handling code into two parts: the top
and bottom haves. The top half is the isr. It must work as quickly
as possible, because it is performed when the irq line associated
with it or even all interrupts are disabled. Usually it does only the
most important and necessary work related to interrupt handling
and the rest is postponed and performed in a bottom half. Linux has
several kinds of bottom halves. One of them was already introduced:
the threaded interrupts. The top half verifies that the hardware
interrupt was caused by the i/o device with which it is associated
and returns a value that causes the kernel to wake up a thread that
does the rest of interrupt handling. The kernel thread is performed
in the process context, so it can sleep and be rescheduled. That
way of servicing interrupts allows the kernel to perform other high–
priority work first. In this lecture three other bottom halves are
discussed. The rest, namely the kernel timers, will be introduced in
a future lecture. 3 / 24



Introduction

Introduction

There is no general rule about which activities related to interrupt
handling should be performed in the top half and which in the bot-
tom half. There are only some recommendations:

1 if the activities are time bounded, then they should be in top
half,

2 if the activities require accessing the i/o device, then they
should be in the top half,

3 if the activities cannot be interrupted by another or the same
interrupt, then they should be in the top half,

4 any other activities may be performed in the bottom half.
To verify if the decision of putting some activities in the top or the
bottom half was right the programmer must check the performance
of the kernel after the solution is implemented.

4 / 24



Softirqs

Softirqs
Softirqs together with tasklets have replaced a bottom half infras-
tructure that had been used in the kernels predating the 2.4 series.
However, the softirqs closely resemble this old mechanism. They
are statically declared, which means that they cannot be used in
kernel modules. The total number of softirqs is limited to 32, but
this is more than enough. For example in the 5.10 version of the
kernel only 10 is used (see the result of cat /proc/softirqs). All
softirqs are performed in the interrupt context and in a multiproces-
sor computer system they can be performed in parallel. Each softirq
is represented by a structure of the struct softirq_action type.
The definition of the type is given in the listing 1.

1 struct softirq_action
2 {
3 void (*action)(struct softirq_action *);
4 };

Listing 1: Definition of the struct softirq_action type 5 / 24



Softirqs

Softirqs
In earlier versions of the kernel there was another member of this
structure type, a field of the void * type, called data. It was not
used, so it was removed. The member that is left is a pointer to a
function called a softirq handler. The prototype of this function is
as follows:

void softirq_handler(struct sortirq_action *);
The name of the function is usually different from what is used
in this prototype. In earlier versions of the kernel the parameter
was of the void * type. When the data field was removed it had
to be replaced with some other pointer and it is the pointer to
the structure of struct softirq_action type. It means that the
function takes as an argument an address of the structure that en-
closes the pointer to it. An array named softirq_vec is defined
in the kernel/sofirq.c file. It has 32 elements of the struct
softriq_action type. In other words it is the array of softirq
descriptors. The indices of the array also define the priorities of
softirqs. 6 / 24



Softirqs

Softirqs
The softirq with the index 0 has the highest priority. There is
also an enumerated type defined in the linux/interrupt.h header
file, which contains convenient names to each of the indices. The
softirq_vec array is used by the __do_softirq() function, which
is responsible for invoking the softirq handlers. Before a softirq can
be performed it has to be marked for execution by a top half. This is
called raising the softirq and is performed by the raise_softirq()
function which takes as an argument one element from the afore-
mentioned enumerated type, which corresponds to the softirq that
has to be raised. The function disables interrupts and sets one bit
in a bitmap called pending, which has 32 bits. The position of the
bit corresponds to the priority of the softirq and in consequence to
its index in the softirq_vec array. After that the function re–
enables the interrupts. If the interrupts are already disabled the
raise_softirq_off() function can be used instead. Disabling in-
terrupts is necessary, to prevent possible race conditions.

7 / 24



Softirqs

Softirqs
Usually the softirqs are preformed just after the isr exits, but in
some cases, when the kernel has some more important work to do,
they can be deferred, for some unspecified, but usually short time.
The kernel checks if there are any pending softirqs in the code per-
formed after the top half finishes, or in the ksoftirqd kernel thread
or in any other kernel code that explicitly verifies if there are any
softirqs to be executed. If it is necessary to run the softirqs, then the
__do_softirq() function is called. The function first disables the
interrupts, copies the pending bitmap to a local variable, zeros out
the bitmap and re–enables the interrupts. After that, in a loop it
checks the value of the most significant bit in the bitmap local copy.
If it is set, then the function invokes the first softirq handler from
the softirq_vec array. Then, it shifts right by one bit the bitmap
copy and advances to the next element of the array. Actually, it
uses a pointer to the array, so it only increments the value of this
pointer. The loop finishes when there are no more softirqs to run.

8 / 24



Softirqs

Softirqs

New softirqs can be registered in the kernel with the use of the
open_softirq() function, which takes two arguments. The first one
is the element of the enumerated type, which corresponds to the new
softirq (it has to be first added to the type) and the second one is the
pointer to the softirq handler (the name of it). The softirqs run when
the interrupts are enabled and cannot sleep (they are performed in
the interrupt context). Only one sortifq can run on a single processor
at the same time, but in multiprocessor environment several softirqs
can run simultaneously or even several instances of the same softirq
can be performed at the same time (each on a single processor).
Moreover the softirq handlers tend to use only data which are local
for a given processor. It means that the softirqs are very scalable.

9 / 24



Tasklets

Tasklets
If a bottom half, that runs in the interrupt context, is needed in a
kernel module, then a tasklet can be used. Tasklets1 are closely re-
lated to the softirqs, but they are less scalable. In a multiprocessor
computer system only one instance of the tasklet may be performed
at the same time, but different tasklets can run simultaneously.
However, tasklets may be used for works which are performed with
high frequency. Each tasklet is represented by a structure of the
struct tasklet_struct type. The structure has five fields. The
first one is a pointer to the next structure of the same type (these
structures are linked into a list). The second one is a field that stores
the state of the tasklet. This member can have only one value from
the following three: 0 — the tasklet is inactive, tasklet_state_run
— used in multiprocessor environments to indicate that the tasklet
is already running on one of the processors, tasklet_state_sched
— the tasklet is scheduled for running.

1Not to be confused with a task, which in Linux terminology is the same as
a process, but generally it is a process, which is not interactive. 10 / 24



Tasklets

Tasklets

The third field is a reference counter. If its value is greater than
zero, then the tasklet is disabled, and when it is zero, it is enabled.
The fourth is a pointer to the tasklet handler. It is a function of the
following prototype:

void tasklet_handler(unsigned long);
The name of the actual handler can be different. The function takes
only one argument — data for the tasklet. The fifth field is of
unsigned long type and it stores data for the tasklet. There are
two types of tasklets in the Linux kernel: high–priority and regular.
The high–priority tasklets are grouped in a list which is traversed by
the highest priority softirq handler. This function is responsible for
performing these tasklets. The regular tasklets are also linked into
a list, which is traversed by the softirq handler of the 6th priority
(counting from zero). The function performs the tasklets too.

11 / 24



Tasklets

Tasklets
The list of the regular tasklets is named tasklet_vec while the list
of high–priority tasklets is called tasklet_hi_vec. Both types of
tasklets are managed by the same kernel functions, with one ex-
ception. The high–priority taskles are scheduled (added to the list)
with the use of the tasklet_hi_schedule() function and the reg-
ular ones are scheduled with the use of the tasklet_schedule()
function. If a tasklet is already added to one of the lists then it
cannot be added to the same list until it is performed. A tasklet,
regardless if high–priority or regular, can be declared with the use of
the declare_tasklet macro. If the tasklet has to be disabled after
creating the declare_tasklet_disabled macro can be used. The
tasklet structure can be initialized with the use of the tasklet_init()
function. If a tasklet that is scheduled needs to be disabled the
tasklet_disable() function can be applied. If the tasklet is al-
ready running then the function waits until it finishes and only then
it exits.

12 / 24



Tasklets

Tasklets

A less safe version of the tasklet_disable() function is called
tasklet_disable_nosync(). The latter doesn’t wait even if the
tasklet is already running. A scheduled tasklet can be removed
from the list with the use of the tasklet_kill() function. It can-
not be used in the interrupt context, because it may wait for the
tasklet to exit. To enable a tasklet the tasklet_enable() function
is used. The tasklets are performed in the interrupt context. They
may be scheduled by an isr or by other code. Just like in the case
of the softirqs, there is no way of telling when exactly tasklets will
be performed. To learn the details of the tasklet api please refer to
the sixth laboratory instruction.

13 / 24



Tasklets

The ksoftirqd Kernel Thread

Softirqs and tasklets that are repeated with a high frequency or
reactivate themselves can pose a problem to the system. They may
create too much load for the cpu or cpus. To mitigate the problem
handling of such softirqs and tasklets is delegated to the ksoftirqd
kernel thread. Each cpu has one instance of this thread, which runs
with the lowest possible priority. When the thread is woken up, it
checks if there are any softirqs (and thus tasklets) pending. If so
it calls the __do_softirq() function. After the function exits the
thread changes it state to task_interruptible and goes to sleep.

14 / 24



Work Queues

Work Queues
Work queues2 provide a way of performing a bottom half in the
process context. Each work, that has to be performed by a work
queue is represented as a work item — an element of a queue (list).
The work item points to a function which implements the work.
The work queue is traversed by a special kernel thread called a
worker thread that performs the worker_thread() function and also
invokes functions pointed by work items.
Worker threads are grouped in thread–pools. In a multiprocessor
environment each cpu has two thread pools, one for high–priority
work queues and one for regular work queues. The kernel also has
so–called unbound work queues, that are not permanently associated
with any specific cpu. The number of threads in each pool is self–
regulated.

2The work queues or workqueues have replaced a bottom half implementation
that existed in the kernel before the 2.6 series was released and was called task
queues. Those tasks were unrelated to the processes in any way aside from the
name. 15 / 24



Work Queues

Work Queues

The work queue is represented in the kernel by a structure of the
struct workqueue_struct type (in earlier kernel versions it repre-
sented a worker thread). Linux has a default work queue which is
handled by a worker thread called kworker, but new work queues
can be created with the use of the alloc_workqueue() function
which takes three arguments. The first one is a string that repre-
sents the name of the queue and also the name of so–called rescue
worker thread. Those threads are used for servicing work queues
which work items are involved in memory reclaim. The next argu-
ment is a set of following flags:
wq_non_reentrant by default there can be many instances of a

work function run in a multiprocessor computer sys-
tem; if the flag is given then only one instance of the
function can be performed system–wide,

16 / 24



Work Queues

Work Queues

wq_unbound the queue is not associated with a specific cpu,
wq_freezable the queue will participate in hibernating the system,
wq_mem_reclaim the queue will participate in memory reclaim,
wq_highpri the queue will handle high–priority work items,
wq_cpu_intensive cpu intensive work items in the queue will not

prevent other work items handled by the same thread–
pool from starting execution. This flag has no effect
for unbound queues.

The last argument of the alloc_workqueue() function is a number
that specifies how many work items can be performed concurrently
at most.

17 / 24



Work Queues

Work Queues

There are also available two macros that create new work queues.
The first one is named create_workqueue and it creates a work
queue which is serviced by as many worker threads as the computer
has cpus. The other one is called create_singlethread_workqueue
and it creates a work queue that is handled by only one worker
thread. Nowadays implementation of the work queue doesn’t cre-
ate a fixed number of threads for each of the queues. The ker-
nel monitors the load of the cpus and the number of work items
in a work queue and dynamically adds worker threads if they are
needed or removes them if they are redundant. Any work queue,
except for the default one, may be removed with the use of the
destroy_workqueue() function.

18 / 24



Work Queues

Work Queues
The work item is represented by a structure of either the struct
work_struct type or struct delayed_work type. The first one is
for works that are postponed for unspecified time and the second one
for works with a specified time period before they start. The work
queue guarantees only that the delayed works won’t start before
the specified delay, but it doesn’t assure that these works will be
performed immediately after. Each work item points to a function
called a work handler, which has the following prototype:

void work_handler(struct work_struct *work);
The actual work function, or work handler doesn’t have to be named
like that. The code in the function may cause the worker thread to
go to sleep, but it cannot access the user–space. The work item
structures can be created with the use of the declare_work and
declare_delayed_work macros. The first one creates a work item
of the struct work_struct type and the second one a work item
of the struct delayed_work type.

19 / 24



Work Queues

Work Queues

Structures of the first type can be initialized with the init_work
macro and the structures of the second type can be initialized with
the init_delayed_work macro. To add an initialized work item
to the default work queue the schedule_work() function may be
applied. If the work has to be performed on a particular cpu the
schedule_work_on() function can be used. A work item repre-
sented by the structure of the struct delayed_work type can be
added with the use of the schedule_delayed_work() function to
the default work queue. If the work has to be done on a specific cpu,
then the schedule_delayed_work_on() function may be used. The
flush_scheduled_work() function forces execution of all work han-
dlers scheduled in the default work queue.

20 / 24



Work Queues

Work Queues
The work queues api has functions that can be applied to any work
queue. The queue_work() and queue_delayed_work() functions
add to a specified work queue a work item represented by a structure
of the struct work_struct type or the struct delayed_work type
respectively. If the work has to be performed on a specific cpu then
the queue_work_on() or the queue_delayed_work_on() function
may be used instead. If delayed work is already scheduled then the
period after which it can be performed may be changed with the use
of the mod_delayed_work() or the mod_delayed_work_on() func-
tion. The function cancel_work_sync() cancels scheduled work. If
the work handler is already running then the function will wait until
it exits. Likewise the cancel_delayed_work_sync() function can-
cels the delayed work. The cancel_delayed_work() also cancels
delayed work, but in less safe fashion — it doesn’t check if the work
handler is already running. The flush_work() function waits until
a specific work is performed. It returns immediately if the work is
not scheduled for execution. 21 / 24



Work Queues

Work Queues

The flush_delayed_work() does the same for specified delayed
work. Finally, the flush_workqueue() function forces the execu-
tion of all work items added to a specified queue and waits until the
last work handler exits.
For more details on the work queue api please refer to the sixth
laboratory instruction.

22 / 24



The End

Questions

?

23 / 24



The End

The End

Thank You for Your attention!

24 / 24


	Introduction
	Softirqs
	Tasklets
	Work Queues
	The End

