
Operating Systems 2
Process Scheduling, part 2

Arkadiusz Chrobot

Department of Information Systems

March 26, 2025

1 / 20



Outline

1 O(1) Scheduler Drawbacks

2 Scheduling Classes

3 Priorities

4 Fair Scheduling — Introduction

5 Completely Fair Scheduler

6 Earliest Eligible Virtual Deadline First

2 / 20



O(1) Scheduler Drawbacks

O(1) Scheduler Drawbacks

The O(1) Scheduler has some drawbacks inherited from multi-level
queuing or more precisely multilevel feedback queue scheduling:

time slices associated with priorities are invariable, which means
that if there are only two low-priority processes in the system
then they will be able to run uninterrupted only for a very short
period of time and they will be preempted very often,
the granulation of the time slices can be insufficient, i.e the
length of time slices allocated for two high-priority processes
(for example −20 and −19) is similar, but time slices of two
low-priority processes (for example 18 and 19) differ much,
the measurement of time slice consumption is not precise,
heuristics used for measuring the interactivity level of a process
are not tampering-proof, which allows the processes to gain
more cpu time than they really require.

3 / 20



O(1) Scheduler Drawbacks

O(1) Scheduler Drawback

Some of those disadvantages were mitigated in the O(1) Scheduler,
but eradicating them turned out to be impossible. That is why the
Linux kernel programmers decided to rework the scheduler in the
version 2.6.23 of the kernel.

4 / 20



Scheduling Classes

Scheduling Classes
One of the most important additions to the new scheduler are the
structures of the struct sched_class type called scheduling classes
which represent a scheduling policy applied to a specified group of
processes. Each such a structure contains a set of function pointers
that point to functions performing the following activities according
to a specific policy:
enqueue_task() adds a process to the run queue,
dequeue_task() removes a process from the run queue,
yield_task() allows a process to relinquish the cpu,
check_preempt_curr() checks if the current process has to be pre-

empted by the process that just woke up,
pick_next_task() chooses the next process to run,
put_prev_task() takes a part in the context switching,
set_curr_task() invoked when the scheduling policy of the cur-

rent process is changed,
new_task() responsible for allocating the cpu for new processes.

5 / 20



Scheduling Classes

Scheduling Classes
Scheduling classes handle the following policies:
sched_fifo real-time processes scheduled with the use of the fcfs

algorithm,
sched_rr real-time processes scheduled with the use of the round-

robin algorithm,
sched_deadline real-time processes scheduled with the use of the

edf (Earliest Deadline First) algorithm; this policy has
been introduced in the 3.14 version of the kernel,

sched_normal regular processes scheduled by the cfs algorithm;
this policy corresponds to the sched_other policy
from the posix standard,

sched_batch scheduling policy for a low-priority, cpu-bound pro-
cesses; it is handled by the cfs scheduler,

sched_idle scheduling policy for low-priority processes which are
run when no other process is ready to run; also handled
by the cfs algorithm.

6 / 20



Scheduling Classes

Scheduling Classes

Scheduling classes are linked together in a list, starting with classes
for the highest priority processes (the real-time ones) to the lowest
priority (the batch and idle processes). The schedule() function
traverses the list calling the pick_next_task() function (method)
for each of the class. The one that returns a non-null value has cho-
sen the next process to run. It is worth to notice that the scheduling
classes are one of the several examples of applying the concept of
Object-Oriented Programming in the Linux kernel, although the
kernel itself is written in plain c, not in c++.

7 / 20



Scheduling Classes

Scheduling Entities

In the 2.6.23 kernel version another important structure was intro-
duced. Its type is struct sched_entity. This structure allows
the kernel to schedule not only individual processes but also groups
of such processes. More generally — it allows scheduling so-called
scheduling entities. Such structures are new members of each process
descriptor. An example of group of processed scheduled together is
the rt_bandwidth group for real-time processes. It is assumed that
95% of each second of the processor time is allotted to the real-time
processes and the 5% for the regular processes. That ratio can be
changed by the system administrator. The group has been intro-
duced in the 2.6.23 version of the kernel, to prevent monopolizing
the cpu by the sched_fifo processes.

8 / 20



Priorities

Priorities

Starting from the version 2.6.23 of the kernel, priorities of all pro-
cesses are static, with one exception. The priority of a regular pro-
cess can be temporally boosted to the real-time priority, when the
process invokes a system call that uses the so-called rt-mutex. This
is to prevent the priority inversion problem.

9 / 20



Fair Scheduling — Introduction

Fair Scheduling — Introduction

The Fair Scheduling is about providing for each of the processes a
fair share of the cpu computing power. To better understand how
it works let’s consider a perfectly multitasking processor. When such
a cpu has to run one and only one process it allocates 100% of its
power to the process. In case when it has to run n identical pro-
cesses it allocates to each of them 1

n of its power. As a consequence
all processes runs n× slower than a single process, but still they are
performed simultaneously, and without unnecessary breaks. Un-
fortunately, this scenario cannot be implemented with the use of
real-life processors. However, the cpu can be allocated to the pro-
cess basing on the information of how long it hasn’t been allowed to
use the cpu. If there is a single process in the system it can get
the cpu for as long as it needs, but when another process becomes
ready it immediately preempts the first one, because it used much
less of the cpu computing power.

10 / 20



Fair Scheduling — Introduction

Fair Scheduling — Introduction
Let’s consider another scenario in which two identical processes has
to be scheduled at the same time. The scheduler can calculate the
time of running (the time when each process has assigned the cpu)
of each of the processes by assuming a targeted latency and allocat-
ing a share of it to each of them. The targeted latency is a short
period of time, typically several milliseconds. However, it has to be
longer then the time needed to switch processes. It should be noted,
that extending the scenario to n processes leads to an issue. When
the number of processes approaches infinity the time when they are
allowed to use the cpu goes to zero. Therefore some bottom limit
for that time has to be defined and it is called the minimum granu-
larity. In real-life systems some of the processes are more important
than the others, which is expressed by their priorities. In the fair
scheduling the priorities are converted into weights which are used
by the scheduler to compute the portions of the targeted latency for
each of the processes.

11 / 20



Completely Fair Scheduler

Completely Fair Scheduler
The Completely Fair Scheduler (the cfs for short) has replaced the
O(1) Scheduler in the Linux kernel. It is authored by Ingo Molnár,
who was inspired by the ideas of Con Kolivas, an Australian kernel
programmer. The change was introduced to address some issues
with scheduling interactive processes for desktop computers. As the
name suggests the scheduler implements fair scheduling, although
it is not completely fair if the number of ready-to-run processes is
large. Fortunately it is a very rare scenario.
The CFS is implemented in the kernel/sched/fair.c file. It uti-
lizes two 40-elements arrays to convert priorities into weights and
weights to priorities. The first one is named sched_prio_to_weight.
The weight for the default priority (the nice level equal 0) is set to
1024. The weights of processes of higher priorities are computed
by multiplying this value in succession by powers of 1.25. The
weights for lower priorities are calculated by dividing the default
weight in succession by powers of the 1.25. The other array is called
sched_prio_to_wmul and it stores the inverses of the weights. 12 / 20



Completely Fair Scheduler

Completely Fair Scheduler

The processes are scheduled according to their virtual runtime which
is an actual runtime weighted by the by the number of ready-to-
run processes and their priorities. The process with the shortest
virtual runtime gets the cpu as next. The virtual runtime is mea-
sured in nanoseconds and stored in the vruntime member of the
se field of the process descriptor. This field is a structure of the
struct sched_entity type. The value of the vruntime member
is updated periodically or after some events by the update_curr()
function. The targeted latency is stored in the variable of the name
sched_latency_ns and is set by default to 20ms. This value can
be changed by the system administrator. The maximal number of
processes that has to be scheduled in that period of time is stored in
the sched_nr_latency and its updated by the kernel. The minimal
amount of time (the bottom limit) in which each process is allowed
to run is set to 1ms.

13 / 20



Completely Fair Scheduler

Completely Fair Scheduler
The run queue for the cfs is actually a red-black tree. It is a type
of binary search tree in which each node has an additional property
that is called a colour. The collocation of colours in that tree is
governed by the following principles:

1 The root of the tree is always black.
2 Each node is either black or red.
3 Children of the red node are always black.
4 Leafs are always black.
5 Every simple path from a given node to its descendant leaf goes

through the same number of black nodes.
If all those conditions are fulfilled, the tree is balanced. When one of
them is not satisfied, which is a consequence of adding or removing a
node from the tree, then the balance has to be restored by left and
right rotating some of the subtrees or changing colours of several
nodes.

14 / 20



Completely Fair Scheduler

Completely Fair Scheduler

Linux kernel has its own generic implementation of a red-black tree
(see the third instruction for the laboratory classes; for more details
on the red-black trees see the “Introduction to Algorithms” book
by T. H. Cormen et al.). The cfs uses this implementation to sort
the processes according to their virtual runtime. The leftmost node
in the tree specifies the process with the shortest virtual runtime.
If its shorter than the virtual runtime of the current process than
process represented by the leftmost node of the tree preempts the
current one. Locating the leftmost node in the red-black tree takes
O(log2(n)) time, where n is the number of ready-to-run processes.
To speed up finding the node the kernel function responsible for
adding a new node to the tree sets a special pointer when it inserts
the leftmost node. Detecting such a case is quite easy: if the function
always takes the left branch while traversing the tree to insert a new
node, then it means that the new node is the leftmost one.

15 / 20



Completely Fair Scheduler

Completely Fair Scheduler

If the cfs scheduler finds the pointer to be null then it means the
sched_normal policy class is empty and it should move to another
class (sched_batch).
Just like the O(1) Scheduler, the cfs tries to run the new child
process before its parent. To achieve the goal it sometimes swaps
virtual runtimes of both processes.
It takes the cfs longer to perform operations on the queue of runnable
processes, when compared with the O(1) Scheduler. However, the
cfs is more fair as it goes to the scheduling of interactive processes.
That’s why it has replaced the latter in Linux kernel.

16 / 20



Earliest Eligible Virtual Deadline First

Earliest Eligible Virtual Deadline First

In the 6.6 version of the Linux Kernel, the cfs scheduler has been
replaced by the Earliest Eligible Virtual Deadline First eevdf sched-
uler implemented by Peter Zijlstra. The reason is that the new
scheduling algorithm is better at handling latency requirements and
modern CPUs. The latency is the time that it takes to allocate the
CPU to the process that needs it. Some processes run for a short
time, but need the CPU as soon as possible. These are latency-
sensitive. Other may require the CPU for a longer period of time,
but they can wait for it. The modern CPUs are build from cores

that are functionally equivalent, but differ in performance. Intel
calls them (confusingly) P-cores and E-cores. The P(erformance)-
cores are performance-oriented and the E(fficiency)-cores are energy
efficiency-oriented. Scheduling processes on such CPUs needs a dif-
ferent approach then the one taken in the cfs.

17 / 20

https://lwn.net/Articles/925371/
https://www.youtube.com/watch?v=F4pibcYbT9U


Earliest Eligible Virtual Deadline First

Earliest Eligible Virtual Deadline First

The eevdf algorithm was first published in a paper by Ion Stoica
and Hussein Abdel-Wahab. It is not a real-time scheduler and it is
similar to cfs. Just like the latter, the eevdf allocates a fair share
of the cpu time for each of the processes, taking their priorities into
account. However, after all of them use their allocated time, the
scheduler calculates their lag, which is the difference between the
cpu time allocated to a process and the actual cpu time it got.
Processes with a greater or equal zero lag are marked as eligible to
run, because they didn’t receive their fair share of cpu time. The
cpu should be allocated to these processes in the first place. Other
processes, with negative lag have to wait for a while to become
eligible to run. This wait-time is called an eligible time. The eligible
time is added to the virtual runtime of each process. The sum is
called the virtual deadline and the process should not receive the
cpu time until its deadline is up.

18 / 20

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564


The End

Questions

?

19 / 20



The End

The End

Thank You for Your attention!

20 / 20


	O(1) Scheduler Drawbacks
	Scheduling Classes
	Priorities
	Fair Scheduling — Introduction
	Completely Fair Scheduler
	Earliest Eligible Virtual Deadline First
	The End

