
Operating Systems 2
Networking

Arkadiusz Chrobot

Department of Information Systems

June 17, 2024

1 / 17



Outline

1 Introduction

2 The tcp/ip Stack

3 Network Device Drivers

4 The Netfilter

2 / 17



Introduction

Introduction

Unix is one of the first operating systems that offered an implemen-
tation of network communication. Nowadays, most of the Internet
servers run on Linux, the Unix-like operating system. In this lec-
ture a short overview of the Linux kernel network subsystem is given.
This subject is complex, so only the most important concepts are
presented. The content is split into three parts:

kernel-level packet processing,
network device drivers,
the netfilter implementation.

3 / 17



The tcp/ip Stack

The tcp/ip Stack

The part of the kernel that is responsible for handling the incom-
ing and outgoing network packets is called the tcp/ip stack. Fig-
ure 1 shows the packet flow inside the Linux kernel1. The Linux
kernel network subsystem consists of three parts that correspond
to three layers of iso/osi model — the data link layer, the net-
work layer and the transport layer. To send data through a net-
work a user process invokes an appropriate system call that acti-
vates the write() method of a file object associated with the pro-
cess network socket. Depending on the transport protocol used by
this socket the write() method calls either the tcp_sendmsg() or
udp_sendmsg() kernel function. These functions are responsible for
building a header of the required protocol.

1The lecture is based on: https://docs.kernel.org/networking/index.html and
William Stallings “Operating Systems: Internals and Design Principles”, Pear-
son Education, Inc, London, 2005

4 / 17

https://docs.kernel.org/networking/index.html


The tcp/ip Stack

The tcp/ip Stack

user process

socket system calls wake_up_interruptible()

socket layer

tcp_sendmsg() tcp_data_queue()
udp_sendmsg() udp_queue_rcv_skb()

tcp udp

ip_queue_xmit() tcp_v4_rcv()
ip_push_pending_frames() udp_rcv()

ip

network device

outgoing request interrupt

dev_queue_xmit()

ip_rcv()

network device driver

softirq[net_rx_action()]

low-level packet reception

netif_rx()

deferred packet reception

Figure 1: Incoming and outgoing packets processing inside the kernel

5 / 17



The tcp/ip Stack

The tcp/ip Stack
The transport protocol header is attached to the data from the user
process. Then a function responsible for creating and adding to
the packet an ip header is invoked. In case of a udp packet it is
the ip_push_pending_frames() function. For the tcp packet the
ip_queue_xmit() is called. The packet with all required headers is
passed to a network device with the help of the dev_queue_xmit()
function. However, before the packet will be send, its route to the
destination host (a computer or other device in the network) must
be set. This is the responsibility of the ip_route_output() function
that checks caches or (if necessary) routing tables to determine the
packet destination. Should the packet be sent to other hosts in the
network, then it is further processed by the ip_output() function.
When a network device receives an incoming packet it saves the
packet to a buffer and often triggers an interrupt. Optionally two
other interrupts may be raised when a transmission of a packet is
finished or when a transmission exception occurs.

6 / 17



The tcp/ip Stack

The tcp/ip Stack

There are cases when the network device doesn’t trigger the in-
terrupt upon receiving of a packet. This is explained in the next
section where the napi is described. The interrupt handler passes
the packet within the buffer to the netif_rx() function that al-
locates memory for another buffer, where it copies the packet and
then sets a driver pointer to point to the packet ip header. Fi-
nally, the netif_rx() function adds the buffer to a queue. All
packets from the queue are processed by the ip_rcv() function
that calls the ip_local_deliver() function. The latter invokes
the tcp_v4_rcv() function for tcp packets or the udp_rcv() func-
tion for udp packets. Next, functions informing the user process
that a packet has arrived are called. In case of tcp packet it is
the tcp_data_queue() function and for the udp packet it is the
udp_queue_rcv_skb() function.

7 / 17



The tcp/ip Stack

The tcp/ip Stack

The main data structure used by the kernel network subsystem is the
packet buffer called sk_buff. The data type of this buffer is struct
sk_buff. The structure stores not only the received or sent data
but also metadata required for processing the packet. The metadata
are located in the packet header. The packet buffer is designed to be
efficiently transferred from one queue to another. If it is copied then
only its header is duplicated. The header has three fields (members)
that point to the private headers storing metadata associated with
the three layers of iso/osi model. The transport_header points
to the transport layer header. The network layer header is pointed
by the network_header. Finally the mac_header points to the data
link layer header. All packet buffers are stored in a queue imple-
mented as a doubly linked list.

8 / 17



Network Device Drivers

Network Device Drivers

The main data structure used by a network device driver is a struc-
ture of the struct net_device type. The most important fields
of this structure are: the mtu — it specifies the maximum size of
a packet that can be transmitted by the device, the flags — it
specifies the state of the device, the dev_addr — points to the mac
address, the promiscuity — it is a counter that stores the num-
ber of requests to set the device in a promiscuous mode and the
ip_ptr — it points to the part of packet buffer that stores ipv4 spe-
cific data, the rx_handler — points to a receiver interrupt handler,
the netdev_ops — points to a structure of pointers to functions
performing such operations as sending a packet.
Earlier implementations of network device drivers required the de-
vice to acknowledge every packet reception by triggering an inter-
rupt. In effect a heavy network traffic could cause a kernel overload.
In the 2.6 kernel series a new api for network device drivers was
created and named napi.

9 / 17



Network Device Drivers

Network Device Drivers

The napi enables the driver to switch the network device to a polling
mode and allow it to accumulate a number of incoming packets that
are later processed by the kernel. This reduces the number of inter-
rupts triggered by the device and as a consequence lowers the kernel
load. Some of the incoming packets can be dropped before they are
passed for processing to the kernel. It is called packet throttling.
The napi requires a buffer in the ram for dma transmissions or a
hardware support in a form of a dma ring.

10 / 17



The Netfilter

The Netfilter

The netfilter (the name is an abbreviation of the expression “Net-
work Filter”) is a set of function pointers, called hooks, that are lo-
cated in strategic places inside the tcp/ip stack. These pointers can
be used for creating firewalls or nat (Network Address Translation)
subsystems. Functions pointed by hooks are usually implemented
inside a kernel module2. There are five hooks in the kernel network
subsystem:
nf_ip_pre_routing functions associated with this hook are called

when a packet is received,
nf_ip_local_in functions associated with this hook perform pro-

cessing of packets delivered to the host,
nf_ip_forward functions associated with this hook perform pro-

cessing of packets that should be forwarded to other
hosts,

2http://www.paulkiddie.com/creating-a-netfilter-kernel-module-which-filters-udp-packets
11 / 17

http://www.paulkiddie.com/creating-a-netfilter-kernel-module-which-filters-udp-packets


The Netfilter

The Netfilter

nf_ip_post_routing functions associated with this hook perform
processing of packets with established routes that are
intended to be sent,

nf_ip_local_out functions associated with this hook perform pro-
cessing of packets that were sent locally.

Each function associated with any of the hooks can perform any
operation on a packet that is necessary, but it has to eventually
return one of the following values:
nf_accept the packet is accepted for further processing,

nf_drop the packet is rejected,
nf_repeat the function call should be repeated for this packet,
nf_stolen the function “steals” the packet, which means that this

packet will be processed in a different way than the
other packets,

12 / 17



The Netfilter

The Netfilter

nf_queue the packet is added to a queue from where it will be
transferred to the user-space,

nf_stop processing of the packet is stopped.
A single function associated with a hook is represented by a struc-
ture of the struct nf_hook_ops type. The definition of the type
is given in the Listing 1. The list field allows these structures to
be stored in a linked list. The hook field is a pointer to the packet
processing function. The dev field is a pointer to a structure that
represents the network device. The priv member is a pointer to
an area of the memory that stores private data of the packet pro-
cessing function. The pf field stores the identifier of the protocol
family. Packets of this protocol will be processed by the function.
The hooknum field stores the hook number and the priority field
stores the function priority that determines the order in which the
packet processing functions are performed (the nf_ip_pri_first
constant defines the highest priority).

13 / 17



The Netfilter

The Netfilter

1 struct nf_hook_ops
2 {
3 struct list_head list;
4 nf_hookfn *hook;
5 struct net_device *dev;
6 void *priv;
7 u_int8_t pf;
8 unsigned int hooknum;
9 int priority;

10 };

Listing 1: The definition of the struct nf_hook_ops

14 / 17



The Netfilter

The Netfilter

Structures of the struct nf_hook_ops type are registered with the
use of the nf_register_net_hook() function and unregistered with
the help of the nf_unregister_net_hook() function. The data
type of the value returned by the packet processing function is
unsigned int3. The function takes three arguments: an address
of its private data (it is passed by the void * type parameter),
an address of a packet buffer (the buffer is of the struct sk_buff
type) and finally an address of a structure that stores the state of
the hook. This structure is of the struct nf_hook_state type.

3Possible return values were described in earlier slides.
15 / 17



The End

Questions

?

16 / 17



The End

The End

Thank You for Your attention!

17 / 17


	Introduction
	The tcp/ip Stack
	Network Device Drivers
	The Netfilter
	The End

