
Operating Systems 2
Process Address Space

Arkadiusz Chrobot

Department of Information Systems

June 11, 2024

1 / 16



Outline

1 Introduction

2 Process Address Space Organization

3 Memory Descriptor

4 Virtual Memory Areas Management

2 / 16



Introduction

Introduction

The Linux kernel is responsible for managing its own address space,
as well as the address spaces of user-space processes. Each of them is
given a flat (linear) address space which by default is separated from
the address spaces of other processes. It means that a process cannot
read or modify data of other processes, even if it uses the same
virtual addresses as them. However, Linux kernel makes it possible
for the processes to share their address spaces, if it is requested.
That’s how it implements user-space threads. Each address space of
a process is partitioned into intervals of addresses known as memory
areas (see Figure 1). Every process can ask the kernel to add a new
memory area to its address space, but it should not reference non-
existent areas or violate the permissions (write, read or execute)
of its own memory areas. Otherwise, the kernel will abort such a
process and its user will see the “Segmentation Fault” message on
the screen.

3 / 16



Introduction

Introduction

beginning

end

A
dd

re
ss

es
gr

ow
th

is
w

ay
.

kernel

stack

memory mappings

text section
data section
.bss section

heap

Figure 1: Conceptual Model of User Process Address Space in Linux
4 / 16

https://ocw.mit.edu/courses/6-s096-effective-programming-in-c-and-c-january-iap-2014/df281b9bb8aa5c4377567454bb839676_MIT6_S096IAP14_Lecture3S.pdf


Process Address Space Organization

Process Address Space Organization
Memory Areas

There are several types of memory areas:
text section is a memory area where the part of an executable file

that contains process code is mapped,
data section is a mapping of the part of an executable file that con-

tains process initialized global variables,
.bss section is a memory area where the zero page is mapped; this

area contains uninitialized global variables,
stack is an area for the process user-space stack; initially the

zero page is mapped here,
memory mapped files files that have been mapped onto memory,
shared memory segments memory areas that implement shared mem-

ory,
anonymous memory mappings memory areas allocated for example

with the use of the malloc() function.
5 / 16



Process Address Space Organization

Process Address Space
Memory Areas

The .bss abbreviation stands for “block started by symbol” and it
is a name used for historical reasons. The data section contains
global variables with initial values other than zero. These values
are stored in an executable file. That’s why they are called “initial-
ized”. The .bss section contains global variables whose initial value
is zero. These values are not stored in the executable file, hence
these variables are called “uninitialized”.
The text sections, data sections and .bss sections are also used by
shared libraries, often called shared objects or dynamically loaded
libraries. With each memory area is associated a separate set of
permissions. Memory areas don’t overlap.

6 / 16



Memory Descriptor

Memory Descriptor
Information about an address space of a single process is stored in
its memory descriptor. It is a structure of the struct mm_struct
type, which is defined in the same file as the process descriptor
type. The memory descriptor has many members. Among them are
fields that store the start and end addresses of the text section, the
data section, the stack, the memory area that stores command line
arguments and the memory area that stores environmental variables.
If the value of the mm_count field is 1 then the address space specified
by the memory descriptor is shared by at least two processes which
are threads. The exact number of these threads is stored in the
mm_users field. The task_size field defines the address space size.
It has been added to the kernel to allow the 32-bit processes to run in
64-bit systems. Two fields of the memory descriptor are associated
with data structures that store the same data but in different ways.
The first one is the mmap field which stores an address of a list that
stores data about all memory areas. The second one is called mm_rb
and stores an address of a red-black tree root. 7 / 16



Memory Descriptor

Memory Descriptor
The tree stores the same data as the list, but searching in such a
tree is quicker than searching the list. On the other hand the list
is a simpler data structure for traversing it sequentially. In the 2.0
Linux kernel series the data about memory areas were stored in the
list, as long as the number of these areas was less than 20. If it had
exceeded this limit then the data would have been reorganized into
avl tree.
The kernel links all memory descriptors into a doubly linked list,
starting with the memory descriptor of the init (or its equivalent)
process. Also, the address of a memory descriptor is stored in the
mm field of the descriptor of the process, that owns the address space
specified by the memory descriptor. When a process forks, then a
new memory descriptor is allocated to its child with the use of the
allocate_mm macro and then the content of its memory descriptor
is copied to the memory descriptor of the child with the help of
the copy_mm() function. The allocation of the memory descriptor
is performed by the slab allocator. 8 / 16



Memory Descriptor

Memory Descriptor

If the clone() system call gets the CLONE_VM flag as one of its ar-
guments, then the new process will share the address space with
its parent. In other words these processes will be threads. In this
case no memory descriptor is allocated for the new process. Both of
them will share the same memory descriptor.
When a process or a thread exits then the exit_mm() function is
invoked that updates some statistics, performs some cleanup oper-
ations and calls the mmput() function that decrements the value of
the mm_users field in the memory descriptor. If the value reaches
zero, then the mmdrop() function is called, which decrements the
value of the mm_count field in the memory descriptor. If the value
of the latter field reaches zero too, then the memory descriptor is
deallocated with the use of the free_mm() function.

9 / 16



Memory Descriptor

Memory Descriptor
The kernel-space threads or simply kernel threads do not have their
own address space, they share it with the kernel. Therefore they also
do not have memory descriptors. The value of their process descrip-
tor mm field is null. However, kernel threads have to access memory
to run, so they use the memory descriptors of user-space processes
that were using the cpu before them. The memory descriptor of
each process stores data about the kernel address space for the needs
of system calls. This information is the same for all processes, but
since the release of the 4.15 kernel version different page tables are
used in the kernel mode and in the user mode. This change has
been introduced by the kpti patch to mitigate the Meltdown vul-
nerability (see: https://meltdownattack.com/). The address of the
recently scheduled user-space process memory descriptor is stored in
the active_mm field of the kernel thread process descriptor. In case
of regular user processes the kernel uses this field when the process
begins to run a different program — a different code loaded from
the executable file. 10 / 16

https://meltdownattack.com/


Virtual Memory Areas Management

Virtual Memory Areas Management
The subsystem that manages memory areas or more precisely vir-
tual memory areas (vma) has been developed with the use of object-
oriented techniques. Each virtual memory area is represented by an
object which is a structure of the vm_area_struct type. Aside from
“regular” fields this structure has a member which is a pointer to a
structure whose fields are pointers to functions that perform some
operations on the virtual memory ares. In other words these func-
tions are methods and the latter structure is a method table. The
vma_start and vma_end fields of the virtual memory area object
store the start and end address of the memory area. The vm_flags
field stores flags that specify the properties and purpose of pages
that form the virtual memory area. Among these flags are: vm_read,
vm_write, vm_exec — specify memory areas that can be read, writ-
ten or executed, vm_shared — denotes a memory area that is shared,
vm_io — indicates a memory area where the input/output registers
of a device are mapped, vm_locked — specifies memory area which
pages cannot be swapped, vm_seq_read — specifies a memory 11 / 16



Virtual Memory Areas Management

Virtual Memory Areas Management
area where a file is mapped that offers only sequential reads, so
the kernel can read some of its data in advance, i.e. before a user-
process requests the data, to increase the efficiency of the file read
operation, vm_rand_read — denotes a memory area where a file is
mapped that offers both sequential and random access, so reading its
data in advance doesn’t bring any benefits. The object method table
is a structure of the vm_operations_struct type. This structure
has several members that point to functions performing operations
on a virtual memory area. Among these functions are: open() —
the function is invoked when a new virtual memory area is added
to the process address space, close() — the function is invoked
when a virtual memory area is removed form the process address
space, fault() — this function is called when the page fault excep-
tion is raised, and the page exists, but is not present in the ram,
page_mkwrite() — it is called when the page fault exception is
raised and a read-only page changes to writable, access() — the
function is called when some exceptions are raised while an 12 / 16



Virtual Memory Areas Management

Virtual Memory Areas Management

address space of a specific process is being accessed. In earlier ker-
nel versions the populate() function was available that was latter
removed. The fault() function replaced the nopages() function.
As it was mentioned earlier, virtual memory area objects are linked
into a list and a red-black tree. The tree is used by the find_vma()
kernel function, that either finds a memory area, which contains an
address given to the function as its argument, or an area that starts
with a greater address. If it fails to find such an area it returns
null, otherwise it returns the address of an object associated with
the virtual memory area. Similarly, the find_vma_prev() function
finds an area that is located before the address that is an argument
of this function. Finally, the find_vma_intersection() function
returns an address of the object that specifies a virtual memory area
which at least partially overlaps an address interval formed by two
addressed that are arguments of this function.

13 / 16



Virtual Memory Areas Management

Virtual Memory Areas Management
The information about all virtual memory areas of a given process
is stored in the /proc/<pid>/maps file, where the <pid> is the pid
of the process. The same data can be displayed on the screen in a
more human-readable form with the use of the pmap command. The
information reveals that text sections and read-only data sections
can be shared by processes as well as shared libraries.
A virtual memory area can be expanded or a new virtual memory
area can be created with the help of the do_mmap() function. Its
primary purpose is to map a file onto the memory. It takes, as one of
its arguments, an address of a file object. However, if a null value
is given instead of that address, then the function will perform an
anonymous mapping, i.e. a zero page will be mapped onto a specified
memory area. This function is invoked by the mmap2() and mmap()
system calls. The former requires that the offset in the mapped file
is expressed in pages, not in bytes. The virtual memory area can be
deleted with the help of the do_munmap() function, invoked by the
munmap() system call. 14 / 16



The End

Questions

?

15 / 16



The End

The End

Thank You for Your attention!

16 / 16


	Introduction
	Process Address Space Organization
	Memory Descriptor
	Virtual Memory Areas Management
	The End

