Operating Systems 2
The Block 1/0 Layer

Arkadiusz Chrobot

Department of Information Systems

June 4, 2025

1/28

N
Outline

@ Introduction

© Buffers

© The Block Input-Output Structure
© 1/0 Schedulers

@ The New Block 1/0 Layer

2/28

Introduction

Introduction

Block 1/0 devices require a more complex handling than character
devices. There are several reasons for that. Block devices offer
random data access, meaning that it is possible to directly specify a
location on the medium from which data should be read or written.
This implies that there is a way of changing the location of the
block device data pointer in both directions: forward or backward.
Almost all block 1/0 devices are equipped with a file system. The
still most frequently used block devices are hard disks, but there are
many more devices of that type (CDs, DVDs, other optical disks,
Solid State Devices and other flash memory devices). The access
time to these devices (particularly the hard disk) is one of the most
important factors that have an impact on the overall performance
of the computer system. That’s why the Linux kernel programmers
decided to implement a whole new subsystem for handling those
devices, which is called The Block 1/0 Layer.

3/28

Buffers

Although the block 1/0 layer supports all block devices it has been
designed primarily for hard disks. The block devices store data in
units called sectors. The size of a single sector is usually 512B (there
are several exceptions, like CDs). Most of the 1/0 operations involve
more than one sector. That’s why modern operating systems tend
to use blocks instead of sectors. A single block is a sector or a group
of adjacent sectors. In the Linux kernel the block size is smaller
or equal to the size of a page'. Each block that is involved in an
1/0 operation has its buffer in the RAM and each buffer has a buffer
header. The header stores all the information required for managing
the buffer. Its data type is defined by the struct buffer_head
structure. Among the data stored in the header is the state of the
buffer kept in the b_state field. This information is described by
one or several elements of the bh_state_bits enumeration.

! This limitation has been removed since the release of the 6.3 version of the

kernel.
4/28

Buffers

Elements of bh_state_bits

The BH_Uptodate element means that the data in the block and in
its buffer are the same. The BH_Dirty element indicates that the
data in the buffer have been modified, but not yet written to the
block in the device. The BH_Lock element denotes that the buffer
is protected against concurrent access, because it takes a part in an
ongoing 1/0 operation. The BH_Req element means that the buffer
is used in an ongoing 1/0 request. The BH_Update_Lock element
marks the first buffer from the group of buffers located on the same
page that are protected against concurrent access, because they take
a part in an ongoing 1/0 operation. The BH_Mapped indicates that
the buffer is associated with a block in the device — the Linux
kernel makes an overprovision of buffers, so not all of them are
immediately associated with blocks. The BH_New element means
that the buffer has been associated with a block, but it hasn’t been
used yet. The BH_Async_Read element denotes that the buffer is

used in an asynchronous read operation. 528

Buffers

Elements of bh_state_bits

The BH_Async_Write element means that the buffer takes a part in
an asynchronous write operation. The BH_Delay element indicates
that the buffer has not been associated yet with a block in the device.
The BH_Boundary element denotes a buffer belonging to a block that
is the boundary of a group of blocks that form a continuous area
on the medium, like for example a disk track. The BH_Write_EIO
indicates that there was an error while the content of the buffer was
stored on the medium. The BH_Unwritten element means that the
buffer is associated with a block, but its data haven’t been stored
in that block yet. The BH_Quiet denotes that 1/0 errors associated
with the buffer won’t be reported. The BH_Meta element means
that the buffer contains metadata. The BH_Prio element indicates
that the buffer takes a part in a high-priority 1/0 operation. The
BH_Defer_Completion element means that the buffer is involved in
an 1/0 operation whose completion is deferred with the use of a

work queue — it is an asynchronous operation. 6,28

Buffers

The bh_state_bits enumeration has one more element which in-
forms that the rest of the most significant bits in the b_state field
can be used by the device driver for its own use. The element is
called BH_PrivateStart. One of the other fields of the header is
the b_count field that is a reference counter. Its value is incre-
mented by the bh_get () function and decremented with the use of
the bh_put () function. Both of them are inline functions. The ref-
erence counter should be incremented before any operation on the
buffer is performed. This prevents a premature deallocation of the
buffer. The b_dev file contains an address of a structure that de-
scribes the block device storing the block associated with the buffer.
The b_blocknr stores the number of the block. The page that con-
tains the buffer is specified by the b_page field. The address within
that page, from which the buffer area starts is stored in the b_data
field and the size of the buffer is kept in the b_size field. There
are other members of the header, but they are less interesting and
won’t be described here. 7/98

The Block Input-Output Structure

The Block Input-Output Structure

Buffer headers used to take a part in 1/0 operations in the ker-
nel versions that predate the release of the 2.6 series. This caused
serious efficiency issues, because a single read or write operation re-
quired using a lot of such headers scattered across the whole RAM.
Moreover, the size of the header was almost the same as the size
of the buffer. The kernel developers decided to remove some of the
header fields and create another structure, called BIO, which repre-
sents an ongoing 1/0 operation with the use of a list of segments.
The word “segment” in this context means a continuous part of
a buffer. Buffers whose segments are the elements of the list don’t
have to form a continuous area in the RAM. Moreover, the buffer can
simultaneously take a part in several 1/0 operations thanks to the
BIO structures. The most important members of the BIO structure
are: bi_io_vec, bi_vcnt and bi_iter. The last one is a structure
itself, that contains the bi_idx field. The first of them stores an
address of an array of bio_vec structures, which is an implementa-
tion of the segments list. 8/28

The Block Input-Output Structure

The Block Input-Output Structure

Each element of the array is a structure with three fields: bv_page,
bv_offset and bv_len. The first specifies the page where the seg-
ment is located, the second the offset in the page from where the seg-
ment starts, and the third the size of the segment. The bi_io_vec
array describes the entire memory space consisting of the segments
of buffers assigned to an 1/0 operation. The bi_vent field specifies
how many elements of that array actually takes a part in the 1/0
operation. The currently processed element of the array is specified
by the bi_iter field, whose value is constantly updated. Using this
field allows the kernel to clone the BIO structure, which is benefi-
cial for device drivers of such devices as RAIDs, because the kernel
can set a different value of the bi_idx field for each of the BIO
structure copies. This makes it possible to perform the 1/0 opera-
tion described by this structure in parallel. The BIO structure has
its own reference counter which is incremented with the use of the
bio_get () function and decremented with the help of bio_put ()
function. 0/28

The Block Input-Output Structure

The Block Input-Output Structure

The bi_private field of the BIO structure may store data belonging
to the structure’s creator. Using the BIO structure in the kernel has
the following benefits:

@ because the BIO structure uses the struct page structures,
block 1/0 operations can use the high memory,

e the BIO structure can represent the regular 1/0 operations as
well as direct 1/0 operations that do not use buffers,

e it is easier to perform an 1/0 operation whose data come from
many pages scattered across the RAM (so-called scatter-gather
or vectored block 1/0 operations),

e managing the BIO structure is easier than managing the buffer
header.

10/28

1/0 Schedulers

1/0 Schedulers

Most of the device drivers maintain a queue of 1/0 requests for the
device they are handling. These queues are called request queues and
are represented by the request_queue structure which stores con-
trol data needed for managing the queue and a pointer to a doubly
linked list of requests. Each request in the queue is represented by
the struct request structure. If the queue is not empty than the
driver takes the first request from the queue and performs it. Each
request can contain many BIO structures that represents a specific
1/0 operation with the use of the segments. The relation between
the two latter structures is shown in the Figure 1.

11/28

1/0 Schedulers

1/0 Schedulers

’ request ‘
I |
| BIO | | BIO |
| |
segment
. segment
Sesmen segment
page page page page

Figure 1: The relations between data structures used by the Block 1/0
Layer

12/28

1/0 Schedulers

1/0 Schedulers

For scheduling the requests in the queue is responsible the 1/0 sched-
uler whose job is to minimize the data access time?. It allows a bet-
ter average bandwidth utilization and prevents request starvation
to appear. Basically the 1/0 scheduler performs two operations on
1/0 requests: merging and sorting®.

2For example by reducing movements of heads in such block devices as a hard
disk.

3Not to be confused with the merge sort algorithm.
13/28

1/0 Schedulers

1/0 Schedulers

When a new request is created the 1/0 scheduler tries to merge it
with requests that are already in the queue and relate to adjacent
blocks. If the scheduler fails to do that then it tries to add the new
request among other requests in the queue that are associated with
blocks located in its proximity. These operations reduce the need
for frequent changing of the block device data pointer movement
direction. This behaviour of the 1/0 scheduler is defined by the
LOOK algorithm described in many operating system textbooks. The
Linux kernel offers its users a choice of at least three 1/0 scheduling
algorithms?. Before the 2.6 kernel series was released there was
only one 1/0 scheduler algorithm called the Linus Elevator”. This
algorithm uses a front and back merging which means that the new
request can be merged at the start or at the end of a cluster of
requests that relate to the adjacent blocks in the device.

4The number sometimes changes with the release of a new kernel version.

51/0 scheduling algorithms are often called elevators.
14/28

1/0 Schedulers

1/0 Schedulers

The Linus Elevator

The back merging happens more often than the front merging. If the
new request cannot be merged with others then the 1/0 scheduler
switches to sorting i.e. it tries to add the request among other
requests that relate to blocks located in its proximity. If it fails to
do that then it adds the new request at the end of the request queue.
The scheduler does it also when it finds a request which is about
to expire. This should prevent starvation of the request, but on the
contrary it sometimes causes this issue.

15/28

1/0 Schedulers

1/0 Schedulers

Deadline 1/0 Scheduler

In the 2.6 series of Linux kernels the Linus Elevator 1/0 scheduler has
been replaced with three other algorithms. The first of them is the
Deadline 1/0 Scheduler which prevents request starvation and gives
precedence to the read requests over the write requests. The read
delays have more impact on user-space application performance than
write delays. The Deadline 1/0 Scheduler maintains three queues:
the sorted queue, the read FIFO queue and the write FIFO queue.
When a new request is created it is added to the sorted queue where
the sorting and merging happens, just like in the Linus Elevator.
Simultaneously it is also added to the write FIFO or the read FIFO
depending on what type of request it is. The Deadline 1/0 Scheduler
assigns a 500 milliseconds deadline to each read request and 5 second
deadline to the write request. Normally the request from the front
of the sorted queue is removed and added to the dispatch queue —

the queue managed by the device driver.
16 /28

1/0 Schedulers

1/0 Schedulers

Anticipatory 1/0 Scheduler

However, when one of the request from the FIFO queues is close to
expiring then this request is added to the dispatch queue. Another
scheduler in the 2.6 series was the Anticipatory 1/0 Scheduler. It
operated similarly to the Deadline 1/0 scheduler but it tried to avoid
interrupting a stream of write requests by a single read requests. If
it detected such a request it would stop handling other request for 6
ms — this time could be configured. If during the time another read
request occurred then the Anticipatory 1/0 Scheduler would handle
it immediately. This behaviour was beneficial if such cases happened
a lot. Otherwise the waiting time could be wasted. To prevent such
an issue the Anticipatory 1/0 Scheduler gathered statistics of the
user-space processes 1/0 operations and used heuristic functions to
predict if the new read operation would be followed by a next one.
The Anticipatory 1/0 Scheduler was the default 1/0 scheduler in the
2.6 series until the release of the 2.6.18 kernel version. In the last
version of the series 2.6.23 it was entirely removed from the kernel., .

1/0 Schedulers

1/0 Schedulers

The cFQ 1/0 Scheduler

The Completely Fair Queuing 1/0 Scheduler has been introduced in
the kernel in the 2.6.6 version and it became the default scheduler in
the 2.6.18 version (several distributions used it earlier as a default
1/0 scheduler). Its behaviour can be shortly described as a mix-
ture of the multi-level queuing, the round-robin algorithm and the
anticipatory 1/0 scheduling. The crqQ 1/0 Scheduler introduces a
new property of user-space processes, the 1/0 priority. This sched-
uler also allocates for each of these processes a queue, implemented
as a red-black tree, for synchronous 1/0 operations®. It also main-
tains several queues for the asynchronous 1/0 operations, which are
shared by all user-space processes. The CFQ 1/0 Scheduler services
the queues in a round-robin fashion starting from the queue of the
process with the highest 1/0 priority. From each of the queues it
takes as many 1/0 requests as the time slice assigned to the queue
allows it.

6Synchronous 1/0 operations require the process to wait for their completion,

18/28

1/0 Schedulers

1/0 Schedulers

The Noop Scheduler

The time slice is also specified by the 1/0 priority. However, if
the cFQ 1/0 Scheduler empties the queue before the time slice ex-
pires, the scheduler can use the remaining time to wait for new 1/0
requests to occur in the queue. If that happens the requests are
handled immediately. After the CFQ 1/0 Scheduler services all the
queues associated with processes it starts handling the queues for
the asynchronous 1/0 operations, although in their case it doesn’t
apply the waiting. Because the Anticipatory 1/0 Scheduler in some
respect copies the behaviour of the cFQ 1/0 Scheduler, but its effi-
ciency is worse, it has been removed from the kernel and replaced
by the latter scheduler.

The last 1/0 scheduler is the Noop 1/0 Scheduler”. This scheduler
performs only the merging operation on request queue and it is used
with devices that offer a truly random access to data, like the flash
memory storage devices.

"The name is derived from the “no-operations” word. 19/28

1/0 Schedulers

1/0 Schedulers

The default 1/0 scheduler can be changed when the kernel is con-
figured for compiling or even during kernel’s runtime. The second
option requires only modifying of one of the files in the /sys direc-
tory, for example the /sys/block/sda/queue/scheduler file. The
following command displays the content of this file:
cat /sys/block/sda/queue/scheduler
If the result is like this:
noop deadline [cfq]
then it means that the CFQ 1/0 Scheduler is the default 1/0 sched-
uler. To change it to the Deadline 1/0 Scheduler the root user can
use the following command:
echo deadline > /sys/block/sda/queue/scheduler

20/28

The New Block 1/0 Layer

The New Block 1/0 Layer

A major rework of the Block 1/0 Layer took place in the 3.13 re-
lease of the Linux kernel. At that time the Solid State Drives (SSDs)
become more common. These devices offer a far more better perfor-
mance than hard disks for which the original Block 1/0 Layer was
designed (millions of operations per second vs. hundreds of opera-
tions per second.). The Block 1/0 Layer became a bottleneck for
SsDs, especially in the multiprocessor computers. The Linux kernel
programmers decided to add third mode of operation for this layer.
The first mode is for block devices that require no request queue,
the second is for devices that require a single request queue, and the
third is for ssps. This mode of operation of the Block 1/0 Layer is so
different from the previous two, that the kernel developers started
to call it the New Block 1/0 Layer. In this mode each CPU (or a node
in the NUMA architecture-based computer system) has its own soft-
ware request queue which isn’t protected with a spin lock. The only
operation that originally was performed on this queue was merging
of adjacent I/O requests. 2128

The New Block 1/0 Layer

The New Block 1/0 Layer

Each ssD is equipped with at least one, but usually several hardware
request queues. The number of these queues is determined by the
device driver when it is initialized and it depends on the device
capability of handling the 1/0 requests in parallel. Requests from
the software queues are moved to the hardware queues and then are
serviced by the ssp. The new mode of the Block 1/0 Layer, called a
multiqueue mode, replaced the single queue mode in 5.3 and newer
versions of the Linux kernel.

22 /28

The New Block 1/0 Layer

The New Block 1/0 Layer

The Kyber 1/0 Scheduler

Initially, the kernel programmers thought that no scheduling is re-
quired for the software request queues, but it proved to be helpful
in improving the efficiency of the slower sspDs and servicing the pri-
orities of 1/0 requests coming from various user-space processes. In
the 4.11 kernel version, the Deadline 1/0 Scheduler has been modi-
fied to service these queues. In the 4.12 version two 1/0 schedulers
designed for this purpose have been added. The first of them —
the Kyber 1/0 Scheduler — is much simpler than the other. Its
goal is to reduce the latency of 1/0 requests. To this end it splits
each software request queue into two, one for the synchronous 1/0
operations and the other for the asynchronous 1/0 operations. The
deadline for the first type of 1/0 operations is 2 ms and 10 ms for
the second type. The Kyber 1/0 Scheduler moves the 1/0 requests
from the software request queues to the hardware request queues in
such a way that the latter are as short as possible. This assures a

short time of processing requests. 2328

The New Block 1/0 Layer

The New Block 1/0 Layer

The Kyber 1/0 Scheduler

The maximum number of 1/0 requests in a hardware request queue
is determined by the time of processing previous 1/0 requests.

24 /28

The New Block 1/0 Layer

The New Block 1/0 Layer

The BFQ 1/0 Scheduler

The Budget Fair Queuing (BFQ) 1/0 Scheduler was planned for the
single queue mode of operation, but eventually has been redesigned
for the multiqueue mode. It is modelled after the CFQ 1/0 Scheduler,
but it also has some features of the CFS process scheduler. The BFQ
1/0 Scheduler assigns to each of processes a number of sectors (the
budget) that it is allowed to transmit in the current round of 1/0
operations scheduling. The input data for calculating the budget
are the 1/0 weight of the process and its behaviour in the previous
rounds of 1/0 scheduling. The calculations are quite complex, but
the resulting budget must not exceed the global limit. The process’s
budget is its share in the block 1/0 device bandwidth, which is
determined with the use of heuristics. The 1/0 requests of processes
with a lower budget are handled before the 1/0 requests of processes
with a larger budget. Each process also has a time slice when it has
to use its budget.

25/28

The New Block 1/0 Layer

The New Block 1/0 Layer

The BFQ 1/0 Scheduler

If a process manages to use all its budget before the time slice
expires and its last 1/0 operation is a synchronous one, then the
BFQ 1/0 Scheduler waits for a new request from this process, just
like the Anticipatory and crQ 1/0 Schedulers do. Several com-
plicated heuristics are applied to improve the performance of the
BFQ I/0 Scheduler. Their detailed description as well as the de-
scription of the BFQ 1/0 Scheduler itself can be found in an article
entitled “The BFQ 1/O scheduler” by Jonathan Corbet, available
here: https://lwn.net/Articles/601799/.

26 /28

https://lwn.net/Articles/601799/

The End

Questions

27/28

THE END

Thank You for Your attention!

28 /28

	Introduction
	Buffers
	The Block Input-Output Structure
	i/o Schedulers
	The New Block i/o Layer
	The End

