
Operating Systems 2
Character and Block Devices

Arkadiusz Chrobot

Department of Information Systems

May 28, 2024

1 / 26



Outline

1 Introduction

2 Character Device Drivers

3 Block Device Drivers

2 / 26



Introduction

Introduction

One of the VFS tasks is i/o devices handling. The word “device”
doesn’t have to mean a real hardware, it can be also a virtual device,
a.k.a a pseudo-device. Most of Unix-like operating systems recognize
three categories of devices — character, block and network devices
— which are accessible to the user-space software. Some of them,
like Linux, also use some subcategories, yet they are internal to
the kernel. This lecture is about how the Linux kernel handles
devices belonging to the first two categories. It also includes a short
introduction to the Linux Kernel Device Model, also known as the
Linux Device Model.

3 / 26



Introduction

Introduction
Introduction to Linux Kernel Device Model

Most modern input-output devices can be plugged in an plugged out
to the computer system while it is working. They have a changing
requirements regarding the power supply and they use advanced
buses. To address all these needs, the Linux kernel programmers
developed the Linux Device Model, LDM for short. This subsystem
makes it possible to [1]:

manage the input-output devices from the user-space,
control the order in which the devices are shut down,
represent the devices and their connections in the kernel,
control the life cycle of data structures involved in device man-
agement,
re-use of the device handling code.

4 / 26



Introduction

Introduction
Introduction to Linux Kernel Device Model

The LDM is the first kernel subsystem, where the object-oriented
programming has been adopted. The main data structure in the
LDM is the kernel object , of the struct kobject type. Usually, the
kernel objects are members of larger data structures, but they are
also linked in hierarchical order. Each kernel object is represented
in the sysfs file system. This representation is used for providing
data about a device to the user-space. It also allows the user-space
to change the device settings. The kernel object is linked with two
other data structures of struct kset and struct kobj_type type.
The former is a container grouping kernel objects that serve the
same purpose, e.g., managing hotplug1 devices. The latter defines
the class of kernel objects that specifies how the object will be re-
leased, when its reference counter drops to zero, and how it will be
represented in the sysfs.

1Dynamically plugged in and out.
5 / 26

https://lwn.net/Articles/51437/
https://linux-kernel-labs.github.io/refs/pull/189/merge/labs/device_model.html


Introduction

Introduction
Introduction to Linux Kernel Device Model

The kernel objects are fundamental for building higher-order data
structures of the LDM, that are also objects representing buses,
drivers, devices, and classes of devices. The data structures of the
struct bus_type type represent physical and virtual buses, that
connect input-output devices to a computer system. For these
objects, programmers usually define two methods: match() and
uevent()2. The former is invoked when a new device is attached
to the system or a new device driver is loaded to the kernel. Its
task is to compare the device ID with the device driver ID. This
method allows the kernel to pair a device with its device driver.
The uevent() method is responsible for adding environment vari-
ables used by the udev3 process, that creates a device file, typically
in the /dev directory.

2Bus objects can have other methods, but these two are the most important.
3In most modern Linux distribution, udev is a part of the systemd process.

6 / 26

https://lwn.net/Articles/31185/


Introduction

Introduction
Introduction to Linux Kernel Device Model

The data structures of the struct device type represent physical
and virtual4 input-output devices. The device drivers, i.e., the soft-
ware responsible for handling the devices, are represented by the
structures (objects) of the struct device_driver type. Finally,
structures (objects) of the struct class type group devices of the
same functionality (e.g., the input-only devices).

4Virtual devices are also called pseudo-device.
7 / 26



Introduction

Introduction
i/o Device Handling in Linux — General Description

In Unix-like operating system the character and block devices are
handled the same way as files, i.e. with the use of the same sys-
tem calls. They are also represented by files, which aside from the
name have three additional attributes: type that specifies if the rep-
resented device is a character device or a block device, the major
number and the minor number. Inside the kernel those numbers are
combined into one 32-bit device number of the dev_t type. Starting
from the series 2.6 of the kernel the major number occupies the most
significant 12 bits of the device number, and the minor number oc-
cupies the least significant 20 bits. However, those numbers inside
the device number should be always accessed with the use of the
major and minor macros. They also ought to be merged into the
device number with the use of the mkdev macro. The reason for this
is that in the earlier versions of the kernel the major and the minor
numbers were 16-bits wide. It has changed in the 2.6 series and so
it may change in the future kernel releases. 8 / 26



Introduction

Introduction
i/o Device Handling in Linux — General Description

The major number identifies the driver that is responsible in the
kernel for handling a family of devices (like the printers for exam-
ple). The minor number identifies the specific device handled by the
driver. It is useful when more than one device of a given family is
attached to the computer. The drivers can be implemented as an
immanent part of the kernel or in a form of a kernel module.

9 / 26



Character Device Drivers

Character Device Drivers
The character devices usually provide sequential access to data and
allow transferring a relatively small amounts of information, like a
few bytes. Moreover, the amount can differ for each transfer. An
example of the character device is a keyboard or a mouse.
The first thing that the character device driver does is acquiring one
or several of device numbers with the help of the following function:
int register_chrdev_region(dev_t first, unsigned int

count, char *name);
The first parameter specifies the first device number from a pool
of such numbers that should be acquired. Should the driver be
available to all Linux users then the numbers it uses have to be as-
signed by The Linux Assigned Name and Numbers Authority (www.
lanana.org). Otherwise the availability of these numbers can be ver-
ified in the /proc/devices file or in the /sys directory. The count
parameter specifies the number of device numbers that have to be
allocated and the name parameter passes the string of characters
that represents the name of the device. 10 / 26

www.lanana.org
www.lanana.org


Character Device Drivers

Character Device Drivers

The function returns 0 if it manages to successfully acquire the de-
vice numbers. More convenient is the following function:

int alloc_chrdev_region(dev_t *dev, unsigned int
firstminor, unsigned int count, char *name);

It allocates for the driver a specified number of device numbers
starting with the first available. The programmer doesn’t specify
the first device number. The dev parameter is an output parameter.
The function uses it to return the first allocated device number. The
firstminor specifies the value of the first minor number that should
be allocated. Usually it is 0. The last two parameters are the same
as in the register_chardev_region() function. If successful the
function returns 0. If the device numbers are no longer used they
should be unregistered with the use of the following function:
void unregister_chrdev_region(dev_t first, unsigned int

count);

11 / 26



Character Device Drivers

Character Device Drivers
The character device drivers use three of the vfs structures: the
file object, the file method table and the i-node object. The file
method table should contain addresses of the functions that perform
operations on the device file. If the driver is implemented as a
kernel module then the value of the this_module macro should be
assigned to the method table owner field. It prevents unloading
the module when one of the methods is performed. Usually the
programmers who write the device drivers implement four methods:
open(), read(), write() and release(), although implementing
all of them in one driver is not necessary. If the device requires
some specific operations that cannot be provided by these methods
then one of the ioctl() methods has to be implemented. The other
methods can be left unimplemented. The driver may make use of
the following members of the file object: f_mode — stores the access
permissions, f_pos — it is the file pointer, f_flags — stores flags,
f_op — points to the method table and private_data — points to
private data of the driver. 12 / 26



Character Device Drivers

Character Device Drivers

The f_mode field may be verified by the open() method, but it is
not necessary, because it is checked by other parts of the kernel,
before this method is called. The driver checks the flags field to
decide if the operations have to be synchronous or asynchronous.
The 64-bit value of the f_pos field can be used by the llseek()
method, which returns modified value of the file pointer. Also the
read() and write() methods use this pointer, which is passed to
them by their last parameter. The private_data field is a pointer of
the void * type, that can point to a dynamically allocated memory
area used for storing data that shouldn’t be lost between methods
calls. The memory area should be allocated by the first invocation
of the open() method, and deallocated by the invocation of the
release() method that follows the last invocation of the user-space
close() function.

13 / 26



Character Device Drivers

Character Device Drivers
In the i-node object the driver can use the i_rdev field that stores
the device number. To obtain the major and minor number from
this field the following functions can be used:

unsigned int iminor(struct inode *inode);
unsigned int imajor(struct inode *inode);

Another field of this object is the i_cdev pointer which points to
a structure that represents in the kernel the character device ser-
viced by the driver. This structure may be created dynamically
and initialized with the use of the cdev_alloc() function. A stati-
cally allocated cdev structure can be initialized with the help of the
following function:

void cdev_init(struct cdev *cdev, struct
file_operations *fops);

In both cases the value of the this_module macro has to be assigned
to its owner field. Also when the structure is created with the use
of the cdev_alloc() function, its ops field has to be initialized
directly. 14 / 26



Character Device Drivers

Character Device Drivers

The cdev structure has to be added to other such structures stored
by the kernel, with the help of the following function:
int cdev_add(struct cdev *dev, dev_t num, unsigned int

count);
This function removes the cdev structure from the kernel storage of
other such structures:

void cdev_del(struct cdev *dev);
Each device handled by the driver has to have its own cdev struc-
ture. In the earlier releases of the kernel the driver didn’t have to
create such a structure. The device was registered by the driver
with the help of the register_chrdev() function and unregistered
by the unregister_chrdev() function. Nowadays, the LDM sub-
system has to be informed about a new driver. It should be done
when the driver is being initialized and it requires using a macro
and a function. The macro creates a structure that describes the
class of the device handled by the driver.

15 / 26



Character Device Drivers

Character Device Drivers
The declaration of the macro is as follows:

class_create(owner, name);
Its first argument is the value of the this_module macro, and the
second one is the name of the class. The function is declared as
follows:

struct device *device_create(struct class *class,
struct device *parent, dev_t devt, void *drvdata, const

char fmt, …);
It creates and registers in the sysfs file system a structure that
represents the device. Its first argument is the address of the class
structure. The second argument is the address of a parent data
structure — it can be null if no such structure exists. The third
argument is the device number. The fourth argument is a pointer
to a data stored in the structure and used by callback functions
— it also can be null. The fifth argument is a formatted string
that represents the name of the device. It can contain conversion
specifiers.

16 / 26



Character Device Drivers

Character Device Drivers
The structure created by the device_create() function can be re-
leased with the use of the following function:

void device_destroy(struct class *cls, dev_t devt);
The function has two arguments: the address of the class structure
and the device number. The class structure can be freed using the
following function:

void class_destroy(struct class *cls);
As an argument it takes the address of the class structure. The
behaviour of the device driver methods should follow a specific pro-
tocol. The open() method may:

identify the device the driver handles — get its minor number,
check if there are no errors specific to that device,
initialize the device, if it is opened for the first time,
update the file pointer, if necessary,
allocate and initialize the memory area for private data, if nec-
essary.

17 / 26



Character Device Drivers

Character Device Drivers

Likewise the release() method should follow this protocol:
deallocate the memory area for the private data, if it has been
allocated by the open() method,
shut down the device after the last invocation of the user-space
close() function.

The implementations of read() and write() methods should also
respect some rules. They should return the number of actually
read/written bytes. In case of failure they should return an er-
ror code that identifies the cause, like -eintr — a signal has been
received, -efault — a bad address, -eio — a general input-output
error.
For more detailed description of the character device driver api
please refer to the eighth laboratory instruction.

18 / 26



Block Device Drivers

Block Device Drivers

The block device drivers use similar structures and operations as
character device drivers. However, the handling of block devices is
a more challenging task, and some of its details will be discussed in
the next lecture. The block devices provide random access to data
and they transfer information in portions called blocks, hence the
name of these devices. The size of a single block is either an even
multiple of the sector size or is exactly equal to the size of a single
sector. The kernel assumes that the size of the sector is 512 bytes.
The first thing that the block device driver does when initializing is
acquiring a major number with the help of the register_blkdev()
function, which is declared in the linux/fs.h header file in the
following way:

int register_blkdev(unsigned int major, const char
*name);

If the first argument of this function is 0 then it will allocate the
first available major number.

19 / 26



Block Device Drivers

Block Device Drivers

The allocated major number can be released using the following
function:
void unregister_blkdev(unsigned int major, const char

*name);
The block device drivers have their own method table which is a
structure of the struct block_device_operations type declared
in the linux/blkdev.h header file. It has the owner field and sev-
eral other members that should point to such methods as: open(),
release(), ioctl(), compat_ioctl(), check_events() and finally
revalidate_disk(). The check_events() method is invoked mainly
when the medium in the device is changed and its invocation is fol-
lowed by the call to the revalidate_disk() method.
Just like a character device is represented by the cdev structure the
block device is represented by a structure of the struct gendisk
type, which is declared in the linux/genhd.h header file.

20 / 26



Block Device Drivers

Block Device Drivers
This structure has the following members: major — stores the major
number, first_minor — stores the first minor number, minors —
stores the number of minor numbers, disk_name — stores a string
that represents the name of the device (up to 32 characters), fops
— stores the address of the block_device_operations structure,
queue — stores the address of the request queue, flags — stores
flags (rarely used, usually only for pluggable devices and optical
disks) and private_data — points to the memory area that stores
driver’s private data. The gendisk structure also stores the ca-
pacity of the block device, expressed in sectors. This value is set
with the help of the set_capacity() function. The gendisk struc-
ture is allocated with the use of the alloc_disk() function and
released after its reference counter reaches zero with the help of the
put_disk() function:

struct gendisk *alloc_disk(int minors);
void put_disk(struct gendisk *disk);

21 / 26



Block Device Drivers

Block Device Drivers

Each gendisk structure represents a single device handled by the
driver, for example a single partition of the hard disk. To make the
device available to the rest of the kernel, the driver should call the
add_disk() function for its gendisk structure:

void add_disk(struct gendisk *gd);
The structure can be released with the use of the del_gendisk()
function:

void del_gendisk(struct gendisk *gd);
The most important member of the gendisk structure is the queue
field, which points to the request queue. The memory for the queue
is allocated with the use of the blk_init_queue():

request_queue_t *blk_init_queue(request_fn_proc
*request, spinlock_t *lock);

The first argument of this function should be an address of a function
that processes the requests from the queue and the second ought to
be the address of a spin lock that protects the queue.

22 / 26



Block Device Drivers

Block Device Drivers
If the driver services a device that unlike hard disks offers truly ran-
dom access to data (for example a flash memory device), then the re-
quest queue is redundant. In this case the queue field of the gendisk
structure is initialized with the use of the blk_alloc_queue() func-
tion:

request_queue_t *blk_alloc_queue(int flags);
If such an initialization is performed then the driver should provide
an implementation of the make_request() function that processes
a single request. The function should be registered with the use of
the following function:

void blk_queue_make_request(request_queue_t *queue,
make_request_fn *func);

The request queue is deallocated with the use of the following func-
tion:

void blk_cleanup_queue(struct request_queue *q);
For more detailed description of the block device driver api please
refer to the ninth laboratory instruction. 23 / 26



The End

Bibliography

John Madieu. Linux Device Drivers Development. Birming-
ham, UK: Packt Publishing, 2017.

24 / 26



The End

Questions

?

25 / 26



The End

The End

Thank You for Your attention!

26 / 26


	Introduction
	Character Device Drivers
	Block Device Drivers
	The End
	Bibliography
	Books


