
Operating Systems 2
Virtual File System

Arkadiusz Chrobot

Department of Information Systems

May 20, 2024

1 / 22



Outline

1 Introduction

2 Unix File System Model

3 Virtual File System Elements

4 Superblock Object

5 Inode Object

6 Dentry Object

7 File Object

8 Other Data Structures

2 / 22



Introduction

Introduction

The slab allocator is not the only idea invented by employees of Sun
Microsystem that has been also incorporated into the Linux kernel.
One of the others is the Virtual File System (vfs). It is an abstrac-
tion layer that intermediates between the real file system and the
rest of the kernel. The vfs enables Linux to support many different
file systems. It is also interesting because its code is written in an
object-oriented style, although entirely with the use of the C lan-
guage. The vfs provides a unified api for all file systems supported
by Linux. It means that user-space software operates on a file us-
ing the same system calls, like: open(), read(), write(), close(),
regardless of the file system of the storage device where this file
is retained. The vfs “translates” these calls to operations specific
to this file system. Summarizing, the Virtual File System creates
a common model (an abstraction) of a file system that represents
features and operations of a real file system.

3 / 22



Unix File System Model

Unix File System Model

The vfs model is based on four main elements of the original Unix
file system: a file, a directory, an inode (also spelled as “i-node”) and
a superblock. Generally, the file system is a data structure storing a
hierarchically ordered information. In Unix-like systems file systems
are mounted to the common directory tree in specified mounting
points. They create a common namespace accessible to user-space
processes1. When a user process accesses a file system it doesn’t
know on which physical medium this system is located, in contrast
to the MS Windows system, where it has to specify the medium.
Files are ordered sequence of bytes and also one of the two most
important concepts of any Unix-like operating system (the other
is a process). Each file has its unique name. The user processes
can perform operations on files, like opening, reading, writing and
closing.

1In most of the modern Unix-like systems each user-space process can have
its own namespace. In Linux this option is available since the 2.4 kernel version.

4 / 22



Unix File System Model

Unix File System Model

The directories are files that store information (so-called metadata)
about other files. Some of the directories, called subdirectories are
nested in other directories. Sequences of subdirectories names may
be parts of a path. Each element of the path (a name of a directory or
a file) is called a directory entry or a dentry for short. Unix handles
directories the same way as regular files i.e. with the use of the same
operations. Some of the file metadata, like the time and the date
of last modification, the size, are also stored in separate blocks on
the medium, called inodes. The metadata and control information
about the entire file system are stored in the main block on the
physical medium called a superblock. Some real file systems don’t
exactly match this model, but thanks to the vfs they still can be
used in Linux. This abstraction layer represents all their elements
in a way that makes them fit the described model.

5 / 22



Virtual File System Elements

Virtual File System Elements

The Virtual File System code follows the object-oriented program-
ming model although it is entirely written in the C language. The
vfs objects are just variables whose types are defined by structures
that represents classes2. Each of the structures has a member which
is a pointer to a structure of function pointers. This structure points
to functions that implement operations performed on a specific real
file system. In other words these functions are methods. The vfs
defines four types of objects: the superblock objects which represent
superblocks of mounted file systems, the inode objects, which rep-
resent files in the file systems, dentry objects which represent single
directory entries and file objects that represent open files. Each
object of a given type has its own object (structure) of operations.
The super_operations object groups the file system methods, the
inode_operations object groups the file methods.

2In the C++ language it is also possible to use the struct keyword instead
of the class for defining a class of an object.

6 / 22



Virtual File System Elements

Virtual File System Elements

The dentry_operations object groups dentry operations and fi-
nally the file_operations object groups open file operations. Some
of them are “inherited” from the groups of generic functions that im-
plement operations common to all file systems supported by Linux.

7 / 22



Superblock Object

Superblock Object
All data about mounted file system are stored in a superblock object.
Usually, these data correspond to the data stored in a superblock
of the external memory device file system. There are however in-
memory file systems, like sysfs and procfs, that don’t have a phys-
ical superblock. In their cases the content of the superblock object
is generated on the fly. The superblock object type is defined by the
struct super_block structure. It has several members that store
such data as: the identifier of the device where the file system is
located, the maximum size of the file in this file system, the iden-
tifier of the file system type, the number of active references to the
file system, etc. One of the most important fields of this structure
is the s_op member, that points to the superblock operations ob-
ject, also called the superblock method table. This object is in fact a
structure of the struct super_operations type. Each member of
this structure points to a function invoked when the kernel has to
perform some operation on the superblock.

8 / 22



Superblock Object

Superblock Object
For example, decrementing the reference counter is accomplished by
calling the put_super() function like this:

sb->s_op->put_super(sb);
The sb variable is a pointer to the superblock object. Because the C
language, unlike the C++ language, doesn’t have the this pointer,
the sb variable has to be passed to the put_super() function, so
it knows for which object it has been invoked. Other methods
of superblock include: alloc_inode() — allocates and initializes
the inode object, destroy_inode() — deletes the inode object,
read_inode() — reads the content of the inode block from the
storage device and stores it in the inode object, dirty_inode() —
the function marks the inode object as modified; its content may
differ from the content of the inode block in the storage device, that
it represents, write_inode() — writes the data from the inode ob-
ject, to the inode block in the storage medium, drop_inode() —
this method is called by the vfs when the last reference to the inode
object has been dropped; 9 / 22



Superblock Object

Superblock Object
in a Unix-like file system it results in deleting the inode, evict_inode()
— the method removes the inode block from the storage medium,
put_super() — the method is called when the file system is un-
mounted, to decrease the superblock object reference counter; if it
drops to zero then the function also deletes the object, sync_fs()
— the method writes data from the superblock object to the su-
perblock in the storage medium; in other words it updates the su-
perblock, statfs() — the method returns statistics about the file
system, remount_fs() — the method mounts the file system with
new options, umount_begin() — the function aborts the operation
of mounting file system; it is used by networked file systems like
the nfs. Not all methods from this list perform operations on the
superblock. Some of them operate on inodes too. Also, not all of
them have to be implemented in the code that handles a real file
system. The value of the function pointers to the unimplemented
methods is null. The superblock object is created and initialized
by the alloc_super() kernel function. 10 / 22



Inode Object

Inode Object

The inode objects store data required to perform operations on files
and directories associated with these objects. These data include:
the file owner identifier, the so-called real number of the storage
device where the file is kept, file access permissions, the size of the
file and the inode identifier. In case of Unix-like file systems, inode
objects represent inode blocks. For the other file systems the data
for these objects are acquired directly from files or other places in the
storage medium. There are also file systems that don’t store some
of the data needed by inode objects. In that cases default values
are used. The inodes are associated not only with regular files but
also with special files like the device files and fifos. In each inode
object are two members that point to the method tables. The first
one is called f_op and it points to an object of file operations. The
other is named i_op and it points to the inode operations object.

11 / 22



Inode Object

Inode Object
The inode operations include: create() — allocates the new in-
ode object, lookup() — it searches directory for an inode block
associated with the specified directory entry, link() — creates
a hard link, unlink() — removes a link, symlink() — creates
a symbolic link, mkdir() — creates a directory, rmdir() — re-
moves an empty directory, mknod() — creates a special file (for
example a device file), rename() — renames a file, readlink() —
copies a specified part of the full path associated with a given link,
follow_link() — translates a symbolic link to the inode it points
to, permissions() — handles the access permissions in some of the
file systems, setattr() — initializes the event which informs that
the content of the inode has been modified, getattr() — notifies
that the inode object should be updated from the inode block in
the storage medium, setxattr() — sets the extended attributes,
getxattr() — gets the value of the specified extended attribute,
listxattr() — copies the list of extended attributes to a buffer,
removexattr() — removes a specified extended attribute. 12 / 22



Dentry Object

Dentry Object
The dentry objects are associated with each name that occurs in
a path. For example, the kernel creates three such objects for the
following path: /usr/java. The first one is associated with the /
character, which represents the root (main) directory, the next one
represents the usr directory, and the last one is associated with the
java directory. The dentry objects also represent a file names that
end some of the paths and mounting points that can be located
inside a path. These objects don’t have their equivalents in the
storage medium. They are created on the fly when a path is resolved.
The dentry objects are necessary for performing operations specific
to the directories, like traversing the directory tree. These objects
are represented by structures of the struct dentry type. Each
dentry object can be in one of the three states: used, unused and
negative. A dentry object in the used state is associated with a valid
inode object and it has been recently used by the kernel. A dentry
object in the unused state is associated with a valid inode object,
but it hasn’t been used for a while. 13 / 22



Dentry Object

Dentry Object

The kernel doesn’t delete such an object, unless it is short of free
memory. It keeps the dentry object, because it may be useful in the
future. A dentry object in the negative state is not associated with
a valid inode object. It means that it refers to a file or directory that
has been deleted or that never existed. The kernel also doesn’t delete
such an object without a reason. These objects may be useful when
paths that contain entries associated with them are referenced. They
can prevent the kernel from resolving invalid paths that already have
been processed. Dentry objects are allocated and deallocated by the
slab allocator. The Linux kernel maintains also a buffer of dentry
objects. It consists of three elements: a list of all dentry objects, a
list of recently accessed objects, which usually stores objects in used
and unused states, and a hash array that applies a hash function to
quickly locate a given dentry object in the buffer. The kernel starts
resolving a path with the last entry.

14 / 22



Dentry Object

Dentry Object

If it successfully locates the dentry object associated with the name
in the buffer, then there is a chance that the rest of the dentry ob-
jects corresponding to the path has been already created and the
kernel doesn’t have to recreate them. There is also a buffer for in-
ode objects associated with the buffered dentry objects. The dentry
object method table is represented by the structure of the struct
dentry_operations type. The operations include: d_revalidate()
— the method verifies the validity of the dentry object, d_hash()
— it is a hash function, d_compare() — compares names of two
files or directories, d_delete() — the method is invoked when the
reference counter of the dentry object drops to zero, d_release()
— it releases the dentry object, d_iput() — is invoked when the
dentry object looses the inode object associated with it.

15 / 22



File Object

File Object
From the user-space process point of view the file object is the most
important vfs variable. These objects are created by the open()
system call and destroyed by the close() system call. The file
object points to a dentry object that points to an inode object as-
sociated with a file opened by the user process. With a single file
can be associated several file objects, depending on how many times
it has been opened by user processes. The type of this object is
defined by the struct file structure that has a member pointing
to the structure of the struct file_operations type. The latter
implements the method table of the file objects. The file methods in-
clude: llseek() — updates the file pointer, read() — reads the file,
write() — writes the file, poll() — puts a user process to sleep and
wakes it when some activity happens on a file, unlocked_ioctl()
and compat_ioctl() — these two methods are used to perform
some operations on device files that cannot be expressed with the
use of regular file operations; in older kernels there had been only
one such function called ioctl() which used the bkl; 16 / 22



File Object

File Object
the unlocked_ioctl() doesn’t use it, like the compat_ioctl(), but
the latter also preserves the compatibility of file handling between
the 32-bit and 64-bit hardware platforms; in other words it allows
the 32-bit file operations to be performed on 64-bit hardware plat-
forms, mmap() — it maps a file to the memory, open() — opens
a file, flush() — its behaviour depends on the file system, but
it always decrements the file object reference counter, release()
— invoked when the file object reference counter drops to zero,
fsync() — it writes all the buffered changes to the storage medium,
aio_fsync() — it does the same as fsync(), but without putting
to sleep the user process that issued the operation, fasync() —
activates or deactivates signals that notify about asynchronous op-
erations, read_iter() — it reads the data from a file and stores
them in multiple buffers, write_iter() — it writes data from mul-
tiple buffers to a single file, sendpage() — it transfers data between
files, get_unmapped_area() — the method maps a file to an unused
area of memory, lock() — the method manages the file lock, 17 / 22



File Object

File Object

flock() — it is used for implementing a system call of the same
name which provides the advisory file locking, check_flags() —
verifies flags set by the fcntl() function.

18 / 22



Other Data Structures

Other Data Structures
Aside from the four object types, the vfs uses several other struc-
tures. Structures of the file_system_type type store data about
the file system types supported by Linux. These structures are used
by the get_sb() function that reads the content of the superblock
of a given file system from the storage medium. For each file system
supported by Linux the kernel has one such a structure. When a
file system is mounted the kernel creates a variable of the struct
vfsmount type. This structure stores data about the mounting
point, including flags specifying operations that can be performed
on the file system. With each user process are associated three
vfs data structures. The structure of the struct files_struct
type stores data about files opened by the process and their descrip-
tors, including the pointers to the file objects. The structure of the
fs_struct type stores data about the file system associated with
the given process, including the current and the root directory. The
structure of the struct mnt_namespace type defines a unique view
of the mounted file systems for the user process. 19 / 22



Other Data Structures

Other Data Structures

The two former structures can be shared by related processes. The
last one is by default shared by all processes in the system, but it
can also be separately defined for a given process.

20 / 22



The End

Questions

?

21 / 22



The End

The End

Thank You for Your attention!

22 / 22


	Introduction
	Unix File System Model
	Virtual File System Elements
	Superblock Object
	Inode Object
	Dentry Object
	File Object
	Other Data Structures
	The End

