
Operating Systems 2
Memory Management in Linux

Arkadiusz Chrobot

Department of Information Systems

May 13, 2024

1 / 30



Outline

1 Introduction

2 Low-Level Memory Management

3 Kernel Memory Allocators

4 Slab Allocator

5 numa Systems

6 Miscellaneous Memory Management Issues

2 / 30



Introduction

Introduction

The Memory Management subsystem is one of the most complex
parts of the kernel. Its detailed description is given by Mel Gorman
in his book “Understanding Linux Virtual Memory Manager”. This
book is freely available, but today is a little outdated. The complex-
ity of the memory management subsystem is caused by the fact, that
Linux supports many hardware platforms, with miscellaneous mem-
ory systems. Some of them, like the computer systems based on x86
cpus apply segmentation, others like the Alpha processors-based
systems do not use this technique at all. Most of contemporary
computer systems implement the virtual memory. There are how-
ever some embedded and real-time systems for which this solution is
too resource-consuming and too unpredictable. The multiprocessor
systems may use the uma or numa organization of ram. All those
differences have to be addressed by the kernel programmers.

3 / 30



Low-Level Memory Management

Low-Level Memory Management
The mainline Linux kernel uses paging as the primary memory man-
agement system that is supported by most of hardware platforms
for which Linux is available. Kernel pages are not swappable, and
for swapping user pages Linux applies the pfra (Page Frame Re-
claiming Algorithm). It is a modified Second Chance Algorithm that
strives to retain a pool of free frames. The algorithm is implemented
in the kswapd thread, responsible for page swapping. The kernel
uses the multilevel page table. Since 64-bit hardware platforms have
become more common, the table has 4 levels: the Page Global Di-
rectory, the Page Upper Directory, the Page Middle Directory and
finally the Page Table. For some hardware platforms, like those with
32-bit x86 cpus, the Page Upper Directory and the Page Middle Di-
rectory have only one entry. The virtual address has five parts. The
first four, starting from the most significant bit, identify entries in,
respectively, the Page Global Directory, the Page Upper Directory,
the Page Middle Directory and the Page Table (see Figure 1). The
last part — an offset — identifies a byte inside a page. 4 / 30



Low-Level Memory Management

Pages Table

virtual address
pgd pud pmd pte offset

1 2 3

4 5 6

9

11 12

10

7 8

Figure 1: Multilevel Page Table

5 / 30



Low-Level Memory Management

Segmentation

In case of hardware platforms based on 32-bit x86 cpus the Linux
kernel uses segments aside from pages, but only for their memory
protection system which aids a similar system for pages. Five seg-
ment descriptors are applied: the kernel code segment descriptor,
the kernel data segment descriptor, the user code segment descrip-
tor, the user data segment descriptor, the task state segment (tss)
descriptor. The first four segments cover the entire virtual memory
(4 GiB), but they define different memory access permissions. The
tss is used for process switching, but in a limited way. The Linux
kernel also allows MS Windows emulators, like the wine, to use the
Local Descriptor Table (ldt).

6 / 30



Low-Level Memory Management

Zones
With each frame the Linux kernel associates a structure of the
struct page type, which stores data about a page that occupies the
frame. Among those data are reference counter, flags that describe
the state of the page, address of a descriptor of the virtual address
space where the page is mapped and the virtual address of the page.
In case of some hardware platforms, most notably those based on
x86 cpus, not all pages/frames are equal. That is why frames are
divided into zones. In the 32-bit x86 hardware platforms the follow-
ing zones can be found: zone_dma, zone_normal and zone_highmem.
The zone_dma contains frames used for dma transmissions by the
isa (Industrial Standard Architecture) bus-based devices, that can
only access the first 16 MiB of RAM (the bus is 24-bits wide). More-
over, this memory has to be physically continuous, because those
devices cannot use the virtual memory. This zone exists only for
historical reasons. The zone_normal contains regular frames and
pages.

7 / 30



Low-Level Memory Management

Zones

The Figure 2 will be helpful in explaining the need for zone_highmem.
Starting from 2.6 series the Linux kernel splits the virtual memory
into two parts in the 3 : 1 ratio1. The first part is for user-space
processes the second is for the kernel. The address that separates
those two parts is defined as the page_offset constant. In case of
32-bit x86 hardware platforms the total virtual address space size
is 4 GiB (232 B). It means that there are 3 GiB available to user
processes and 1 GiB for the kernel. The virtual address space has to
be mapped to the physical address space (the address space for the
ram). It’s not an issue if the ram size is equal of less than 1 GiB.
When there is more ram, then the kernel won’t be able to address it
entirely. To remove this obstacle the kernel virtual memory address
space is split into two parts for such hardware platforms. The first
part has the size of 896 MiB and contains both the zone_dma and
zone_normal.

1Earlier it split the address space in 2 : 2 ratio, just like MS Windows systems.
8 / 30



Low-Level Memory Management

Zones

The virtual addresses from those zones are translated to physical
addresses and the other way by subtracting or adding the value of
the page_offset constant. The addresses for the last 128 MiB are
not fixed, meaning they can be assigned to pages when needed, with
the use of a special array. That way the kernel can map them to
any part of the ram that is above the 1 GiB limit. The three zones
are used in the 32-bit x86 hardware platforms. In other platforms
there may be no need for some of them2. The 64-bit platforms
usually use zone_dma, zone_normal and zone_dma32. The last one
contains pages that are used in dma transmissions by the 32-bit pci
bus-based devices, that can address only 4 GiB of ram. As for now
there is no need for the zone_highmem in such hardware platforms.
Moreover, they do not use the whole 64 bits in addresses. They
usually make use of 57 or even 48 of them, to reduce the gap between
the user-space and kernel-space virtual memory.

2There is also another called zone_movable, but it won’t be discussed here.
9 / 30



Low-Level Memory Management

Zone highmem

1 GiB

ram Virtual Memory
0x00000000

0xC0000000

0xFFFFFFFF

1 GiB

3 GiB

kernel-space

user-space

highmem 128 MiB

896 MiB

Figure 2: Zone highmem Explanation

10 / 30



Low-Level Memory Management

Zone highmem

1 GiB

ram Virtual Memory
0x00000000

0xC0000000

0xFFFFFFFF

1 GiB

3 GiB

kernel-space

user-space

highmem 128 MiB

896 MiB

Figure 2: Zone highmem Explanation

10 / 30



Low-Level Memory Management

Zone highmem

1 GiB

ram Virtual Memory
0x00000000

0xC0000000

0xFFFFFFFF

1 GiB

3 GiB

kernel-space

user-space

highmem 128 MiB

896 MiB

Figure 2: Zone highmem Explanation

10 / 30



Low-Level Memory Management

Zone Management

The kernel associates with every zone a structure of the struct
zone type. Those are relatively big variables that store such data, as
the name of the zone and the number of free frames that are available
in the zone. The names are strings of characters ended with the
'\0' character: “DMA”, “DMA32”, “Normal”, “HighMem”. Each
structure is protected by a spin lock. The lock protects only data
inside the variable, not the content of the pages in the zone. For the
normal allocations the kernel by default allocates the memory from
the normal zone, provided there are some free frames. Otherwise it
uses the dma zone or the highmem, if the former is also empty. If
the zone is specified in the kernel memory allocator call, then the
memory has to be allocated from this zone.

11 / 30



Kernel Memory Allocators

The Low-Level Allocator

The Linux kernel has a low-level memory allocator that allocates
physically continuous memory areas, which are needed for dma
transmissions by some devices and are helpful in reducing the fre-
quency of the tlb updates. The allocator uses the buddy memory
system. This means that it keeps for each of the zones a list of free
adjoining memory frames, that form areas of the memory whose
sizes can be expressed as a power of two of a single page size. For
example if the kernel needs two pages of physically continuous mem-
ory and the only available area has four frames, then the allocator
splits the area in two, each with two frames. One is allocated and
the other is classified as a free area of the size of two frames. If the
allocated pages are freed after a while, then the allocator merges
the two adjoining areas into one free area of the size of four frames,
provided the other area is still free.

12 / 30



Kernel Memory Allocators

The Low-Level Allocator api

The low-level allocator has an api that consists of the following
functions and macros used for allocating memory:
alloc_pages(gfp_mask, order) allocates 2order pages and returns

an address of the struct page structure that refers to
the first of them,

alloc_page(gfp_mask) allocates a single page and returns an ad-
dress of the struct page structure that refers to it,

get_zeroed_page(gfp_mask) allocates a single page filled with ze-
ros and returns its virtual address (used for allocating
pages for user-space processes),

__get_free_page(gfp_mask) allocates a single page and returns
its virtual address,

__get_free_pages(gfp_mask, order) allocates 2order pages and
returns the virtual address of the first of them.

13 / 30



Kernel Memory Allocators

The Low-Level Allocator api
The virtual address of a page residing in a frame, described by a
structure of the struct page type, may be acquired with the use
of the page_address() function. The gfp_mask parameter is ex-
plained latter in this lecture. The allocated memory can be freed
with the use of the following functions and macros:
void __free_pages(struct page *page, unsigned int order)

releases the group of 2order pages identified by the ad-
dress of the struct page structure associated with the
first of them,

void free_pages(unsigned long addr, unsigned int order)
releases the group of 2order pages identified by the vir-
tual address of the first of them,

free_page(addr) releases one page identified by its virtual address,
__free_page(page) releases one page identified by the address of

its struct page structure.
14 / 30



Kernel Memory Allocators

The kmalloc() function
The result of each memory allocation should be verified. Starting
with the version 2.6.31 the Linux kernel uses a mechanism for de-
tecting memory leaks and from version 4.0 it also has kasan, that
detect more serious issues with memory.
If a physically continuous memory region of arbitrary size is needed
then the kmalloc() function can be used for allocating it. Its pro-
totype is as follows:

void *kmalloc(size_t size, int gfp_mask);
The function allocates memory area of the size specified by the size
parameter or bigger, never smaller. If it fails to allocate the memory
it returns null. To free the memory the kfree() function has to
be used. The prototype of the function is as follows:

void kfree(const void *ptr);
The function checks only if its argument is null, so its up to the
programmer to provide the correct input for that function. The
gfp_mask parameter is used for passing flags which define the char-
acter of the allocation. 15 / 30



Kernel Memory Allocators

Type flags

They are divided into three categories: action modifiers, zone mod-
ifiers and type flags. The action modifiers define what actions the
kernel can take while the memory is allocated. The zone modi-
fiers define the zone that has to be used for allocating the memory.
Finally, the type flags are results of the bitwise or operation per-
formed on some action and zone modifiers, and are frequently used
as arguments for allocator API. Examples of these are:
gfp_atomic specifies a high priority allocation, that cannot sleep;

usually used in the interrupt context,
gfp_nowait similar to gfp_atomic, but the memory pools are used

in the allocation, to reduce the probability that it fails,
gfp_noio specifies that sleeping during the allocation is possible,

but no block i/o operation can be performed,

16 / 30



Kernel Memory Allocators

Type flags

gfp_nofs sleeping and block i/o operations are possible during
the memory allocation, as long as the operations do
not involve using the file system,

gfp_kernel regular allocation of the memory for the kernel,
gfp_user regular allocation of the memory for the user-space pro-

cess, sleeping is possible,
gfp_highuser similar to gfp_user but the memory is allocated in

the high memory zone,
gfp_dma the memory is allocated in the dma zone.

17 / 30



Kernel Memory Allocators

The vmalloc() and vfree() functions

If the allocated memory doesn’t have to be physically continuous
then the vmalloc() function can be used. Its prototype is as follows:

void *vmalloc(unsigned long size);
The allocated memory is freed with the use of the vfree() function
of the following prototype:

void vfree(void *addr);

18 / 30



Slab Allocator

Slab Allocator

The kernel often allocates and frees memory for various data struc-
tures that it needs. Such operations are time-consuming, so it is
a good idea to create a buffer of such structures when the system
is booting. Whenever such a structure would be needed the kernel
would just take it from the buffer and then return it when it is no
longer needed. This is the concept behind the Slab Allocator that
was invented by Jeff Bonwick from SUN Microsystem and imple-
mented for the first time in the SunOS 5.4 operating system. Later
it was adopted for the Linux kernel.

19 / 30



Slab Allocator

Slab Allocator

The slab allocator is based on the following observations:
buffering the often used data structures is beneficial,
frequent allocations and deallocations result in memory frag-
mentation on pages/frames level; to avoid this issue the mem-
ory allocated for buffers is physically continuous,
allocating and freeing buffered data structures is fast,
making a part of a buffer cpu-specific eliminates the need for
locking when the allocations take a place in a multiprocessor
environment,
colouring can be applied to prevent mapping multiple stored
structures to the same line of the cpu cache,
in the numa systems the memory allocations can be performed
on the same node, that initialized them.

20 / 30



Slab Allocator

Slab Allocator Implementation
In the slab allocator the data structure buffers are called caches.
The Linux kernel creates two types of such caches: general purpose
and dedicated. The first ones are used only by the allocator, the
second caches are used for storing a specific data structure. For
example there is one such a dedicated cache for process descriptors.
Often the name of the cache describes what type of data structures
it stores, for example: task_struct_cachep. The cache is built
from slabs, that usually consist of many pages. Each slab stores a
number of data structures, that are called objects in a slab allocator
terminology. Slabs can be full, empty or partial. The objects are
allocated from the partial slabs. If they are not available, then
empty slabs are used. Each cache is represented by a structure of
the kmem_cache type and each slab has its own descriptor, which is
a structure of the struct slab type. The descriptors are stored in
general purpose caches or directly in the slabs. Slabs are created and
destroyed by the slab allocator with the use of kmem_getpages()
and kmem_freepages() functions. 21 / 30



Slab Allocator

Slab Allocator API

The programmer can create a new dedicated cache with the help of
the kmem_cache_create() function. It takes five arguments. The
first one is the name of the cache. The second one is the size of a
single object. The third one specifies the offset of the first object
within a slab — usually it is zero. The fourth argument are flags
that define the characteristics of the cache. It can be zero, a single
value or a result of the bitwise or of several flags. The last argument
is an address of a function which is a constructor for the object — it
initializes the object when it is taken from the cache. If the function
is not required then the null value can be passed as this argument.
The kmem_cache_create() had another argument in earlier kernel
versions, which was an address of a destructor — a function which
cleaned the object when it was returned to the cache. It was not
used, so the kernel programmers decided to remove it. The cache can
be destroyed with the help of the kmem_cache_destroy() function.

22 / 30



Slab Allocator

Slab Allocator API

To allocate objects from the cache the kmem_cache_alloc() func-
tion can be used. These objects can be deallocated with the help of
the kmem_cache_free() function. For a more detailed description
of the slab allocator and the low-level allocators apis please refer to
the second laboratory instruction.

23 / 30



Slab Allocator

Memory Pools
Memory pools are a special type of caches that are managed by the
slab allocator. The pools assure that there will be available free
memory for critical allocations that cannot fail. Each memory pool
is represented by a variable of the mempool_t type and it can be cre-
ated with the help of the mempool_create() function, which takes
four arguments. The first one is the minimal number of free objects
that the pool should always have. The second and third arguments
are addresses of functions that allocate and deallocate memory from
the pool. The last argument is a pointer to the memory area where
the pool should be created. Usually it is a cache. The programmer
can provide her or his own functions that allocate and free objects,
or the mempool_alloc() and mempool_free() can be used instead.
The pool can be resized with the help of the mempool_resize()
or be destroyed with the use of the mempool_destroy() function.
More detailed description of the memory pools api is also available
in the second laboratory instruction.

24 / 30



Slab Allocator

Slab Allocator Replacements

The slab allocator is ineffective for the embedded systems. For such
hardware platforms it has been replaced with the slob (Simple Linked
List of Blocks) since 2.6.23 version of the kernel. Also starting from
this version another replacement of the slab allocator is available,
but this time it is for the mpp (Massively Parallel Processing) sys-
tems. The replacement is called slub allocator and it associates
single structures of the struct page type with groups of frames.
This allows the mpp systems to save a lot of ram.

25 / 30



numa Systems

numa Systems
Linux supports systems with the Non-Uniform Memory Access (numa)
architecture. In the uma systems the kernel assumes that the mem-
ory is linearly addressed and that it belongs to a single numa node.
The memory however doesn’t have to be continuous, it may con-
tain small gaps in the address space. For the 64-bit x86 hardware
platforms the kernel can be compiled with an option enabled that
allows it to emulate a numa system. This option is useful for testing
software for such systems. For the true numa systems are available
two other compilation options. The first one is called discontigmem
and it enables the basic support for a noncontinuous memory of the
numa architecture, that can also be applied to the memory of uma
architecture with big gaps in the address space. The second option is
called sparsemem and it enables experimental support of the numa
architecture, which offers additional features, but it can be unstable
and it shouldn’t be used in production environments. Each numa
node has its own set of zones and its own kswapd daemon.

26 / 30



Miscellaneous Memory Management Issues

Miscellaneous Memory Management Issues

The size of the kernel process stack is only two pages (8 KiB for
computers based on x86 cpus and 16 KiB for hardware platforms
based on Alpha cpus). It means that the memory within this stack
should be carefully allocated. The stack is used by system calls,
regular kernel functions, interrupt handlers and many other parts
of the kernel code. The programmers should avoid using large data
structures as local variables for functions. If it is necessary then
those structures should be declared with the use of the static key-
word. There is a kernel compilation option that enables reducing
the size of the kernel process stack to only one page. It can be ben-
eficial for the mpp systems. In that case the interrupt and softirq
handlers get their own stack also of the size of a single page.

27 / 30



Miscellaneous Memory Management Issues

Miscellaneous Memory Management Issues

The high memory zone pages don’t have fixed virtual addresses.
Such a page can be mapped to the virtual addresses space with the
help of the kmap() function. This mapping can be removed with
the use of the kunmap() function. If the mapping has to be done
or removed in the interrupt context then the kmap_atomic() and
kunmap_atomic() functions can be applied.

28 / 30



The End

Questions

?

29 / 30



The End

The End

Thank You for Your attention!

30 / 30


	Introduction
	Low-Level Memory Management
	Kernel Memory Allocators
	Slab Allocator
	numa Systems
	Miscellaneous Memory Management Issues
	The End

