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Introduction

In the kernel-space the concurrent execution of code is common. So are
shared resources. To protect them from racing conditions and other sim-
ilar problems Linux kernel uses a collection of synchronization methods
collectively named locks. In this lecture the majority of these locks is de-
scribed and their applications are discussed.

3 / 35

Atomic Operations

The simplest shared resources are bits and variables of primitive types.
Most modern cpus provide instructions that perform atomic operations
on such resources. Atomicity means, that they cannot be suspended, they
are performed in one step and sequentially. The problem is that Linux
kernel supports many types of cpus. Some of them provide such atomic
operations as add, subtract, read, write, etc. Others have instructions
that just block the data bus in multiprocessor hardware, when one of
the processors accesses memory. There are also cpus (most notably the
32-bits sparc processors) that do not provide atomic operations at all.
To unify and assure such operations for all supported cpus, Linux kernel
programmers created an abstract type called atomic_t. Variables of this
type store integer numbers. Initially, these numbers could be only 24-bits
wide, although the size of a single atomic_t variable is always 32-bits. The
least significant 8 bits (or in other worlds one byte) were used to implement
a lock, which was necessary for such cpus as sparcs.
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Atomic Operations

In newer versions of the kernel the lock is implemented in other way and
all 32-bits are now available for storing numbers. The operations for the
atomic_t type are implemented as macros and inline functions. Some of
them are specific for a given cpu, other are common for all of them. These
include:
atomic_init() it initializes the atomic_t variable in place of its declara-

tion; as argument the macro takes an integer number,
int atomic_read(const atomic_t *v) atomically reads the value of the

atomic_t variable,
void atomic_set(atomic_t *v, int i) atomically stores the number

given as its second argument in the atomic_t variable,
void atomic_add(int i, atomic_t *v) atomically adds the number given

as its first argument to the atomic_t variable,
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Atomic Operations

void atomic_sub(int i, atomic_t *v) atomically subtracts the num-
ber given as its first argument from the atomic_t variable,

void atomic_inc(atomic_t *v) atomically increments the value of the
atomic_t variable,

void atomic_dec(atomic_t *v) atomically decrements the value of the
atomic_t variable,

int atomic_sub_and_test(int i, atomic_t *v) atomically subtract the
integer number given as its first argument from the atomic_t
variable and returns true (a nonzero value) if the result is 0;
otherwise false,

int atomic_add_negative(int i, atomic_t *v) atomically adds the in-
teger number given as its first argument to the atomic_t
variable and returns true (a nonzero value) if the result is
negative; otherwise false,
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Atomic Operations

int atomic_dec_and_test(atomic_t *v) atomically decrements the value
of the atomic_t variable and returns true (a nonzero value)
if the resulting value of the variable is 0; otherwise false,

int atomic_inc_and_test(atomic_t *v) atomically increments the value
of the atomic_t variable and returns true (a nonzero value)
if the resulting value of the variable is 0; otherwise false.

Please note, that the atomic_t variables are passed to the functions by
pointer, so it is not possible to perform an atomic operation on a variable
of the int type. When 64-bit cpus became more common the kernel
developers added another type, for atomic operations on 64-bit variables,
called atomic64_t. The macros and functions that implement operations
for this type have names that start with atomic64_ or atomic64_ prefix.
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Atomic Operations
Linux kernel also provides atomic operations for bits. The macros and
functions that implement these operations do not require a special data
type. They usually take as arguments the number of the bit in a binary
word and the address of this word, which is passed by the void * pointer.
In theory it is possible to specify any bit in the memory using the first
argument. Bit numbers start from zero for the least-significant bit. These
functions and macros include:
void set_bit(int nr, volatile void *addr) atomically sets (to one)

the nrth bit in a word at the address specified by the addr
pointer,

void clear_bit(int nr, volatile void *addr) atomically clears (sets
to zero) the nrth bit in a word specified by the address stored
in the addr pointer,

int test_and_set_bit(int nr, volatile void *addr) atomically set
the nrth bit in a word specified by the address stored in the
addr pointer and returns its previous value,
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Atomic Operations

int test_and_clear_bit(int nr, volatile void *addr) atomically clears
the nrth bit in a word at the address specified by the addr
pointer and returns its previous value,

int test_and_change_bit(int nr, volatile void *addr) atomically
flips the nrth bit in a word at the address stored in the addr
pointer and returns its previous value,

test_bit(nr, addr) atomically returns the value of the nrth bit in a
word at the address stored in the addr pointer.

There are also non-atomic version of these functions, which names starts
with __ (double underscore) prefix. The kernel also provides two function
that search for the first set or cleared bit starting at a given address. These
are called respectively find_first_bit() and find_first_zero_bit().
If only one word (32 or 64 bits) should be searched, then the faster func-
tions __ffs() and __ffz() can be applied.
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Spin Locks

Spin locks (sometimes spelled spinlocks) are similar to semaphores, but
they force the code that tries to acquire an already locked spin lock, to
busy wait. It means that the code checks in a loop if the spin lock is
unlocked. Spin locks are used for protecting bigger than a single variable
resources, like queues, lists and other data structures. They make the
operations on such resources indivisible, which means that when one such
operation is performed on a given shared resource, no other indivisible
operation on this resource can be started, until the first one is finished.
In other words these operations are performed as critical sections. In case
of spin locks these sections has to be shorter than the time needed for
context switching. Although they are prevailing type of locks in the kernel
source code, they are only present in the binary kernel images compiled for
multiprocessors. In kernels compiled for uniprocessors and with enabled
kernel thread preemption spin locks are replaced with preemption switches
and in kernels compiled for uniprocessors and without enabled preemption
they are not used at all.
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Spin Locks
Spin locks are only useful in multiprocessor environments, due to the busy
waiting mechanism they provide. These locks can be applied inside inter-
rupt handlers, but only when the interrupt system or irq line is disabled,
to avoid deadlocks. Spin locks are also not recursive, which means that
if a code that already possesses a spin lock tries to acquire the same spin
lock then it will result in a (self) deadlock. Spin locks are variables of
the spinlock_t type (it is a structure). The api of spin locks consists of
several functions and macros:
define_spinlock(name) declares and initializes spin lock of a specified

name,
spin_lock() acquires (locks) the spin lock,
spin_lock_irq() switches off local interrupts system and acquires the

spin lock,
spin_lock_irqsave() saves the state of the local interrupts system, dis-

ables interrupts and acquires the spin lock,
spin_lock_bh() turns off the bottom halves (softirqs and tasklets) and

acquires the spin lock,
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Spin Locks

spin_unlock() releases (unlocks) the spin lock,
spin_unlock_irq() releases the spin lock and switches on the local in-

terrupts system,
spin_unlock_irqrestore() releases the spin lock and restores the state

of the local interrupts system,
spin_unlock_bh() turns on the bottom halves (softirqs and tasklets) and

releases the spin lock,
spin_trylock() tries to acquire the spin lock; if it is available then locks

it, otherwise returns 0,
spin_is_locked() returns a nonzero value if the spin lock is currently

acquired; otherwise returns 0.
spin_lock_init() initializes the spin lock.
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Spin Locks
Many resource sharing issues in the kernel can be expressed in the terms
of the readers-writers problem. Linux provides a special version of spin
locks for solving the first readers-writers problem (also called the readers-
preference). They are called Reader-Writer Spin Locks or simply R-W
Spin Locks. The api of these locks has separate functions and macros for
readers and for writers. The R-W spin lock may be acquired by more than
one reader or even multiple times by the same reader (in that case the
R-W spin lock is recursive). The spin lock can be acquired at a given time
only by one writer. Moreover, the writer is allowed to acquire the spin lock
only when no reader or writer possesses this lock. The api of spin locks
consists of following macros and functions:
define_rwlock declares and initializes the R-W lock (a variable of the

rwlock_t type),
read_lock() acquires the R-W spin lock for a reader,
read_lock_irq() turns off local interrupts system and acquires the R-W

spin lock for a reader,

13 / 35

Spin Locks

read_lock_irqsave() saves the state of the local interrupts system, dis-
ables interrupts, and acquires the R-W spin lock for a reader,

read_lock_bh() turns off the bottom halves (tasklets and softirqs) and
acquires the R-W spin lock for a reader,

read_unlock() releases the R-W spin lock for a reader,
read_unlock_irq() releases the R-W spin lock for a reader and turns on

the local interrupts system,
read_unlock_irqrestore() releases the R-W spin lock for a reader and

restores the state of the local interrupts system,
read_unlock_bh() releases the R-W spin lock for a reader and turns on

the bottom halves (tasklets and softirqs),
write_lock() acquires the R-W spin lock for a writer,
write_lock_irq() turns off the local interrupts system and acquires the

R-W spin lock for a writer,
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Spin Locks

write_lock_irqsave() saves the state of the local interrupts system, dis-
ables the interrupts and acquires the R-W spin lock for a
writer,

write_lock_bh() switches off the bottom halves (tasklets and softirqs)
and acquires the R-W spin lock for a writer,

write_unlock() releases the R-W spin lock for a writer,
write_unlock_irq() releases the R-W spin lock for a writer and turns

on the interrupts,
write_unlock_irqrestore() releases the R-W spin lock for a writer and

restores the state of the local interrupts system,
write_unlock_bh() releases the R-W spin lock for a writer and turns on

the bottom halves (tasklets and softirqs),
write_trylock() tries to acquire the R-W spin lock for a writer; returns

nonzero if fails,
rw_lock_init() initializes the R-W spin lock,
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Spin Locks

rw_is_locked() if the R-W spin lock is already acquired it returns true
(nonzero value).

Please note, that there is no read_trylock() function. It wouldn’t have
a point, because the R-W spin lock can be acquired by many readers.
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Semaphores

Unlike the spin lock the semaphore puts the code that tries to acquire it
to sleep if it is already locked. The code (a kernel thread, or any other
execution thread) is added to a wait queue associated with the semaphore.
An execution thread that possesses a spin lock cannot try to acquire a
semaphore because it would cause a deadlock. Also semaphores unlike
spin locks do not switch off kernel threads preemption. They are used for
protecting shared resources that require critical sections that last longer
than the time needed for context switching. The number of the execution
threads that may simultaneously possess the same semaphore is defined
by the semaphore counter. The semaphore is a variable of the struct
semaphore type. It is an abstract type. Its operations are implemented
by the following macros and functions:
sema_init(struct semaphore *, int) initializes a semaphore; its sec-

ond argument is the initial value of the semaphore counter,
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Semaphores

down_interruptible(struct semaphore *) tries to acquire the semaphore;
if it fails it changes the state of the execution thread to
task_interruptible,

down(struct semaphore *) tries to acquire the semaphore; if the semaphore
is not available it changes the state of the execution thread
to task_uninterruptible,

down_killable(struct semaphore *) tries to acquire the semaphore;
if it fails it changes the state of the execution thread to
task_killable; this function is available since the 2.6.26
version of the kernel,

down_timeout(struct semaphore *, long) it is available since the 2.6.16
version of the kernel; it allows the execution thread to set
the maximum time of waiting for acquiring the semaphore,

down_trylock() tries to acquire the semaphore; if it is not possible at the
time, it just returns a nonzero value,
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Semaphores

up(struct semaphore *) it releases the semaphore and wakes one of the
execution threads that awaits this event.

The semaphore can be declared and initialized with the use of the define_semaphore
macro. Just like in the case of spin locks, there are special semaphores
for the first readers-writers problem. These semaphores are variables of
the struct rw_semaphore type. Such a semaphore can be created and
initialized with the help of the declare_rwsem macro, or it can be just
initialized with the use of the init_rwsem() function. The functions that
handle R-W semaphores for readers have similar names to the functions
that handle regular semaphores, but they end with read postfix. Likewise,
the writers’ functions handling R-W semaphores have similar names, but
they end with write postfix. There are also down_read_trylock() and
down_write_trylock() functions but unlike the down_trylock() func-
tion they return zero, if the semaphore is unavailable at the time they
try to acquire it. Finally, there is downgrade_writer() function which
converts a writer lock into a reader lock.
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Mutexes

The kernel programmers noticed, that in most cases, semaphores that take
only two values (binary semaphores) are used. They decided to add a new
type of lock, to replace them. The lock is called mutex1. It is an abstract
type, based on the following structure2:

struct mutex {
atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;

};

Listing 1: Simplified definition of the struct mutex type.

1The name comes from the expression mutual exclusion.
2The actual definition of this structure has some additional members useful for de-

bugging.
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Mutexes

Unlike the struct semaphore, the struct mutex type is cpu indepen-
dent. So are most of the mutex operations (some of the are just optimized
for some of the cpus supported by the kernel). The count field stores the
state of the mutex. If its value is one, the mutex is unlocked, if its zero, the
mutex is locked, if its less than zero, the mutex is locked and at least one
execution thread waits for the mutex to be unlocked. The negative value
of the counter field also means that a thread needs to be woken up when
the mutex is released. Just like the semaphores, mutexes can be used only
in the process context. They are also not recursive. The api of mutexes
consists of the following macros and functions:
define_mutex(name) defines and initializes a mutex of the given name,
mutex_init(struct mutex *lock) initializes the mutex,
mutex_lock_interruptible(struct mutex *lock) tries to lock a mu-

tex; if it fails it changes the state of the execution thread to
task_interruptible,
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Mutexes

mutex_lock(struct mutex *lock) tries to lock a mutex; if the mutex is
unavailable at this time, it changes the state of the execution
thread to task_uninterruptible,

mutex_lock_killable(struct mutex *lock) tries to lock a mutex; if
fails it changes the state of the execution thread to task_killable,

mutex_trylock(struct mutex *lock) tries to acquire the mutex and re-
turns one if it succeed and zero if it failed,

mutex_unlock(struct mutex *lock) releases the mutex,
mutex_is_locked(struct mutex *lock) returns zero if the mutex is un-

locked; otherwise a nonzero value.
There are also real-time mutexes in the Linux kernel, which were shortly
discussed in the third lecture. Any execution thread that acquires such a
mutex has its priority promoted to the real-time priority. This prevents
the priority inversion issue to occur. After the thread releases the mutex,
its priority returns to what it was before acquiring the mutex.
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Completion Variables

Completion Variables are simplified semaphores. They are usually used in
scenarios when there are several threads and one of them has to inform
the others, that it has completed its task. The completion variables are
of the struct complection type. It is an abstract type with operations
defined as the following macros and functions:
declare_completion() declares and initializes the completion variable,
init_completion(struct completion *) initializes the completion vari-

able,
wait_for_completion(struct completion *) waits for the signal that

the other thread has finished its job,
complete(struct completion *) wakes a thread waiting for the signal.
To learn more about the completion variables api please refer to the fifth
laboratory instruction.
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Big Kernel Lock

The Big Kernel Lock or bkl for short was introduced to the 2.2 series of
the kernel, to allow more than one cpu to run the kernel code in an smp
environment. It was supposed to be a temporary solution, but unfortu-
nately it stayed in the kernel for much longer than originally intended. The
bkl is a global spin lock, with some additional properties. An execution
thread starts busy waiting if it tries to acquire the bkl when it is already
locked. However the thread that holds the bkl may go to sleep, and in
that moment the bkl is unlocked. It is locked up again when the thread
wakes up. It is also recursive, disables kernel preempting and can be only
used in the process context. Its api consists of three functions:
lock_kernel() acquires the bkl,
unlock_kernel() releases the bkl,
kernel_lock() checks if the bkl is locked.
In the 2.6.39 version of the kernel the programmers managed to finally get
rid of the bkl. Subsequent versions of the kernel are free of this lock.
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Sequence Locks

The Sequence Locks (also known as sequential locks or simply seqlocks)
were introduced in the 2.6 series of Linux kernel. It is a simple synchro-
nization mechanism for the second readers-writers problem, also called
writers-preference. Such a lock is basically a sequence counter. Its initial
value is zero. In a scenario where there is one writer and many readers
the writer increments the counter before and after it changes the shared
resource. Also every reader reads the counter before and after reading the
shared resource and then compares the results. If the values are the same
but odd then it means that the reader read the resource while the writer
was changing it, and thus the value obtained from the resource may be
incorrect. If the values of the sequence counter differ, then the reading
operation was interleaved with the writing operation. In both cases the
reading must be repeated. If there is more than one writer, then the se-
qlock acts for them as a spin lock.
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Sequence Locks

The sequence locks are implemented as an abstract data type named
seqlock_t. Writers use two functions for incrementing the counter of
the sequence lock. The first one is the wirte_seqlock() function, which
is used before the shared resource is modified and the second one is the
write_sequnlock() function which is used after the shared resource has
been changed. The reader, before reading the shared resource, invokes
the read_seqbegin() function for the sequence lock and stores its re-
sult in a local variable. After reading the shared resources it calls the
read_seqretry() function which reads the current value of the sequence
lock and compares it with its previous value. The reader repeats these
operations as long as the last function returns true. Both functions are
usually invoked in a do…while loop. For more details see the fifth labora-
tory instruction.
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Preemption Disabling

If the shared resources that need protection are local to one of the pro-
cessors in a multiprocessor environment, which means they are unavail-
able for other processors, then disabling and enabling kernel preemp-
tion for this cpu is sufficient for synchronization. The kernel preemp-
tion is switched off when the value of the preemption counter (one of
the members of the struct thread_info structure in case of the ma-
jority of hardware platforms supported by Linux) is greater than zero.
The preempt_count() function returns the current value of that counter.
The preempt_disable() function increments the value of the counter
and the preempt_enable() decrements its value. The invocations of
these functions can be nested, but the second one has to be called as
many times at the first one to re-enable the kernel preemption. The
preempt_enable_no_resched() function enables the kernel preemption,
but does not call the scheduler.
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Preemption Disabling

In a multiprocessor environment the get_cpu() function can be used for
disabling kernel preemption on a specified cpu. It returns the identifier
(a number) of that processor. The put_cpu() function re-enables kernel
preemption on a specified cpu.
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Bottom Halves Disabling

The bottom halves (sofirqs and taskles) for a given cpu can be disabled
with the use of the local_bh_disable() function and re-enabled with the
help of the local_bh_enable() function.
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Barriers

Most of the modern, pipelined cpus apply the out-of-order execution to
perform instructions more efficiently. It means that some of the read and
write operations can be executed in different order than they are in the
source code. If they are independent then it doesn’t matter, but if they
are not then it may cause incorrect results of these operations. The cpu
can recognize some simple patterns of the dependent reads and writes, but
not the complex one. Similar issues can occur during compilation time,
because most of contemporary compilers optimize the executable code for
performance by reordering the instructions. To prevent such an issue the
kernel provides a set of locks called barriers:

rmb() prevents changing the order of any reads that surround it,
read_barrier_depends() prevents changing the order of dependent reads

that surround it,
wmb() prevents changing the order of writes that surround it,
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mb() prevents changing the order of any reads and writes sur-
rounding it,

smp_rmb() in smp systems it acts like the rmb() and for uniprocessors
it behaves like the barrier(),

smp_read_barrier_depends() in smp systems it behaves like the read_barrier_depends()
and for the uniprocessors it acts like the barrier(),

smp_wmb() in smp systems it acts like the wmb() and for the uniproces-
sors it behaves like the barrier(),

smp_mb() in smp systems it acts like the mb() and for the uniprocessors
it behaves like the barrier(),

barrier() prevents the compiler from optimizing the reads and writes
across that barrier.
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RCU Mechanism

The rcu mechanism3 is an effective, highly scalable synchronization mech-
anism that is used for solving the first readers-writers problem. It requires
a usually small memory overhead and a fulfillment of the following require-
ments to work correctly:
▶ the reader’s code that uses the shared resource cannot sleep,
▶ writes to the shared resource should be rare, the reads should be

frequent,
▶ the execution thread may access the shared resource only with the

help of pointers.
If the reader wants to read the shared resource it has to acquire a pointer to
the resource before and perform the operation with the use of the pointer.
If the writer wants to modify the resource it makes a copy of it, then
changes it and publishes a pointer to this copy. If any reader tries to
access the resource after this happens then it receives the pointer to the
new copy of the resource.

3The name comes from the names of three operations: Read-Copy-Update.
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RCU Mechanism

The original is destroyed after the last reader that has access to it finishes
its job. The writer uses the rcu_assign_ptr macro to publish the pointer
to the modified copy of the resource. It can also register the callback func-
tion which will destroy the original when the last reader that accesses it
finishes its job. To this end the writer can apply the call_rcu() func-
tion. It can also destroy the original resource after returning from the
sychronize_rcu() function. The reader uses the rcu_read_lock() func-
tion to acquire the pointer to the resource and the rcu_dereference macro
to actually get access to the resource. Finally, it calls the rcu_read_unlock()
function to release the pointer (but not the memory it points to). The
macro can be used only between the two functions calls. The rcu mecha-
nism does not offer any protection from concurrent writes, so it is mostly
suitable for scenarios where there is only one writer and many readers. For
other scenarios synchronization between writers must be provided.
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Questions

?
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The End

Thank You for Your attention!
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