
Operating Systems 2
Bottom Halves

Arkadiusz Chrobot

Department of Information Systems

April 22, 2025

1 / 24

Outline

Introduction

Softirqs

Tasklets

Work Queues

2 / 24

Introduction

It was stated in the previous lecture that modern operating systems split
the hardware interrupt handling code into two parts: the top and bottom
haves. The top half is the isr. It must work as quickly as possible, because
it is performed when the irq line associated with it or even all interrupts
are disabled. Usually it does only the most important and necessary work
related to interrupt handling and the rest is postponed and performed in
a bottom half. Linux has several kinds of bottom halves. One of them
was already introduced: the threaded interrupts. The top half verifies
that the hardware interrupt was caused by the i/o device with which it is
associated and returns a value that causes the kernel to wake up a thread
that does the rest of interrupt handling. The kernel thread is performed
in the process context, so it can sleep and be rescheduled. That way of
servicing interrupts allows the kernel to perform other high–priority work
first. In this lecture three other bottom halves are discussed. The rest,
namely the kernel timers, will be introduced in a future lecture.

3 / 24

Introduction

There is no general rule about which operations related to interrupt han-
dling should be performed in the top half and which in the bottom half.
There are only some recommendations:

1. if the activities are time-bounded, then they should be performed in
top half,

2. if the operations require accessing the i/o device, then they should
be performed in the top half,

3. if the activities cannot be interrupted by another or the same inter-
rupt, then they should be performed in the top half,

4. any other operations may be performed in the bottom half.
To verify if the decision of putting some activities in the top or the bottom
half was right the programmer must check the performance of the kernel
after the solution is implemented.

4 / 24

Notes

Notes

Notes

Notes



Softirqs

Softirqs together with tasklets have replaced a bottom half infrastructure
that had been used in the kernels predating the 2.4 series. However, the
softirqs closely resemble this old mechanism. They are statically declared,
which means that they cannot be used in kernel modules. The total num-
ber of softirqs is limited to 32, but this is more than enough. For example
in the 5.10 version of the kernel only 10 is used (see the result of cat
/proc/softirqs). All softirqs are performed in the interrupt context and
in a multiprocessor computer system they can be performed in parallel.
Each softirq is represented by a structure of the struct softirq_action
type. The definition of the type is given in the listing 1.

1 struct softirq_action
2 {
3 void (*action)(struct softirq_action *);
4 };

Listing 1: Definition of the struct softirq_action type

5 / 24

Softirqs

In earlier versions of the kernel there was another member of this structure
type, a field of the void * type, called data. It was not used, so it was
removed. The member that is left is a pointer to a function called a softirq
handler. The prototype of this function is as follows:

void softirq_handler(struct sortirq_action *);
The name of the function is usually different from what is used in this
prototype. In earlier versions of the kernel the parameter was of the
void * type. When the data field was removed it had to be replaced
with some other pointer and it is the pointer to the structure of struct
softirq_action type. It means that the function takes as an argument
an address of the structure that encloses the pointer to it. An array named
softirq_vec is defined in the kernel/sofirq.c file. It has 32 elements of
the struct softriq_action type. In other words it is the array of softirq
descriptors. The indices of the array also define the priorities of softirqs.

6 / 24

Softirqs

The softirq with the index 0 has the highest priority. There is also an
enumeration defined in the linux/interrupt.h header file, which con-
tains convenient names to each of the indices. The softirq_vec array
is used by the __do_softirq() function, which is responsible for invok-
ing the softirq handlers. Before a softirq can be performed it has to be
marked for execution by a top half. This is called raising the softirq and is
performed by the raise_softirq() function which takes as an argument
one element from the aforementioned enumeration, which relates to the
softirq that has to be raised. The function disables interrupts and sets one
bit in a bitmap called pending, which has 32 bits. The position of the bit
corresponds to the priority of the softirq and in consequence to its index in
the softirq_vec array. After that the function re–enables the interrupts.
If the interrupts are already disabled the raise_softirq_off() function
can be used instead. Disabling interrupts is necessary, to prevent possible
race conditions.

7 / 24

Softirqs

Usually the softirqs are preformed just after the isr exits, but in some
cases, when the kernel has some more important work to do, they can be
deferred, for some unspecified, but usually short time. The kernel checks
if there are any pending softirqs in the code performed after the top half
finishes, or in the ksoftirqd kernel thread or in any other kernel code
that explicitly verifies if there are any softirqs to be executed. If it is
necessary to run the softirqs, then the __do_softirq() function is called.
The function first disables the interrupts, copies the pending bitmap to a
local variable, zeros out the bitmap and re–enables the interrupts. After
that, in a loop it checks the value of the most significant bit in the local
bitmap copy. If it is set, then the function invokes the first softirq handler
from the softirq_vec array. Then, it shifts right by one bit the bitmap
copy and advances to the next element of the array. Actually, it uses a
pointer to the array, so it only increments the value of this pointer. The
loop finishes when there are no more softirqs to run.

8 / 24

Notes

Notes

Notes

Notes



Softirqs

New softirqs can be registered in the kernel with the use of the open_softirq()
function, which takes two arguments. The first one is the element of the
enumeration, which corresponds to the new softirq (it has to be first added
to the enumeration) and the second one is the pointer to the softirq han-
dler (the name of it). The softirqs run when the interrupts are enabled
and cannot sleep (they are performed in the interrupt context). Only one
sortifq can run on a single processor at the same time, but in multipro-
cessor environment several softirqs can run simultaneously or even several
instances of the same softirq can be performed at the same time (each on
a single processor). Moreover the softirq handlers tend to use only data
which are local for a given processor. It means that the softirqs are very
scalable.

9 / 24

Tasklets

If a bottom half, that runs in the interrupt context, is needed in a kernel
module, then a tasklet can be used. Tasklets1 are closely related to the
softirqs, but they are less scalable. In a multiprocessor computer system
only one instance of the tasklet may be performed at the same time, but
different tasklets can run simultaneously. However, tasklets may be used
for works which are performed with high frequency. Each tasklet is repre-
sented by a structure of the struct tasklet_struct type. The structure
has five fields. The first one is a pointer to the next structure of the same
type (these structures are linked into a list). The second one is a field that
stores the state of the tasklet. This member can have only one value from
the following three: 0 — the tasklet is inactive, tasklet_state_run —
used in multiprocessor environments to indicate that the tasklet is already
running on one of the processors, tasklet_state_sched — the tasklet is
scheduled for running.

1Not to be confused with a task, which in Linux terminology is the same as a process,
but in general it is a process, which is not interactive.

10 / 24

Tasklets

The third field is a reference counter. If its value is greater than zero, then
the tasklet is disabled, and when it is zero, it is enabled. The fourth is a
pointer to the tasklet handler. It is a function of the following prototype:

void tasklet_handler(unsigned long);
The name of the actual handler can be different. The function takes only
one argument — data for the tasklet. The fifth field is of unsigned long
type and it stores data for the tasklet. There are two types of tasklets in
the Linux kernel: high–priority and regular. The high–priority tasklets are
grouped in a list which is traversed by the highest priority softirq handler.
This function is responsible for performing these tasklets. The regular
tasklets are also linked into a list, which is traversed by the softirq handler
of the 6th priority (counting from zero). The function performs the tasklets
too.

11 / 24

Tasklets

The list of the regular tasklets is named tasklet_vec while the list of
high–priority tasklets is called tasklet_hi_vec. Both types of tasklets
are managed by the same kernel functions, with one exception. The
high–priority taskles are scheduled (added to the list) with the use of
the tasklet_hi_schedule() function and the regular ones are scheduled
with the use of the tasklet_schedule() function. If a tasklet is already
in one of the lists then it cannot be added again to the same list un-
til it is performed. A tasklet, regardless if high–priority or regular, can
be declared with the use of the declare_tasklet macro. If the tasklet
needs to be created disabled, then the declare_tasklet_disabled macro
can be used. The tasklet structure can be initialized with the use of the
tasklet_init() function. If a tasklet that is scheduled needs to be dis-
abled the tasklet_disable() function can be applied. If the tasklet is
already running then the function waits until it finishes and only then it
exits.

12 / 24

Notes

Notes

Notes

Notes



Tasklets

A less safe version of the tasklet_disable() function is called tasklet_disable_nosync().
The latter doesn’t wait even if the tasklet is already running. A scheduled
tasklet can be removed from the list with the use of the tasklet_kill()
function. It cannot be used in the interrupt context, because it may wait
for the tasklet to exit. To enable a tasklet the tasklet_enable() func-
tion is used. The tasklets are performed in the interrupt context. They
may be scheduled by an isr or by other code. Just like in the case of the
softirqs, there is no way of telling when exactly tasklets will be performed.
To learn the details of the tasklet api please refer to the sixth laboratory
instruction.

13 / 24

The ksoftirqd Kernel Thread

Softirqs and tasklets that are repeated with a high frequency or reactivate
themselves can pose a problem to the system. They may create too much
load for the cpu or cpus. To mitigate the problem handling of such softirqs
and tasklets is delegated to the ksoftirqd kernel thread. Each cpu has
one instance of this thread, which runs with the lowest possible priority.
When the thread is woken up, it checks if there are any softirqs (and thus
tasklets) pending. If so it calls the __do_softirq() function. After the
function exits the thread changes it state to task_interruptible and
goes to sleep.

14 / 24

Work Queues

Work queues2 provide a way of performing a bottom half in the process
context. Each work, that has to be performed by a work queue is rep-
resented as a work item — an element of a queue (list). The work item
points to a function which implements the work. The work queue is tra-
versed by a special kernel thread called a worker thread that performs the
worker_thread() function and also invokes functions pointed by work
items.
Worker threads are grouped in thread–pools. In a multiprocessor environ-
ment each cpu has two thread pools, one for high–priority work queues
and one for regular work queues. The kernel also has so–called unbound
work queues, that are not permanently associated with any specific cpu.
The number of threads in each pool is self–regulated.

2The work queues or workqueues have replaced a bottom half implementation that
existed in the kernel before the 2.6 series was released and was called task queues. Those
tasks were unrelated to the processes in any way aside from the name.

15 / 24

Work Queues

The work queue is represented in the kernel by a structure of the struct
workqueue_struct type (in earlier kernel versions it represented a worker
thread). Linux has a default work queue which is handled by a worker
thread pool called kworker, but new work queues can be created with
the use of the alloc_workqueue() function which takes three arguments.
The first one is a string that represents the name of the queue and also
the name of so–called rescue worker thread. Those threads are used for
servicing work queues whose work items are involved in memory reclaim.
The next argument is a set of following flags:
wq_non_reentrant by default many instances of a function associated

with a single work item can run in a multiprocessor com-
puter system; if the flag is given then only one such instance
can be performed system–wide,

16 / 24

Notes

Notes

Notes

Notes



Work Queues

wq_unbound the queue is not associated with a specific cpu,
wq_freezable the queue will participate in hibernating the system,
wq_mem_reclaim the queue will participate in memory reclaim,
wq_highpri the queue will handle high–priority work items,

wq_cpu_intensive cpu-intensive work items in the queue will not pre-
vent other work items handled by the same thread–pool
from starting execution. This flag has no effect for unbound
queues.

The last argument of the alloc_workqueue() function is a number that
specifies how many work items can be performed concurrently at most.

17 / 24

Work Queues

There are also available two macros that create new work queues. The first
one is named create_workqueue and it creates a work queue which is ser-
viced by as many worker threads as the computer has cpus. The other one
is called create_singlethread_workqueue and it creates a work queue
that is handled by only one worker thread. Nowadays implementation of
the work queue doesn’t create a fixed number of threads for each of the
queues. The kernel monitors the load of the cpus and the number of work
items in a work queue and dynamically adds worker threads if they are
needed or removes them if they are redundant. Any work queue, except for
the default one, may be removed with the use of the destroy_workqueue()
function.

18 / 24

Work Queues

The work item is represented by a structure of either the struct work_struct
type or struct delayed_work type. The first one is for works that are
postponed for unspecified time and the second one for works with a spec-
ified time period before they start. The work queue guarantees only that
the delayed works won’t start before the specified delay, but it doesn’t
assure that these works will be performed immediately after. Each work
item points to a function called a work handler, which has the following
prototype:

void work_handler(struct work_struct *work);
The actual work function, or work handler doesn’t have to be named like
that. The code in the function may cause the worker thread to go to
sleep, but it cannot access the user–space. The work item structures can
be created with the use of the declare_work and declare_delayed_work
macros. The first one creates a work item of the struct work_struct
type and the second one a work item of the struct delayed_work type.

19 / 24

Work Queues

Structures of the first type can be initialized with the init_work macro
and the structures of the second type can be initialized with the init_delayed_work
macro. To add an initialized work item to the default work queue the
schedule_work() function may be applied. If the work has to be per-
formed on a particular cpu the schedule_work_on() function can be used.
A work item represented by the structure of the struct delayed_work
type can be added with the use of the schedule_delayed_work() func-
tion to the default work queue. If the work has to be done on a specific
cpu, then the schedule_delayed_work_on() function may be used. The
flush_scheduled_work() function forces execution of all work handlers
scheduled in the default work queue.

20 / 24

Notes

Notes

Notes

Notes



Work Queues

The work queues api has functions that can be applied to any work queue.
The queue_work() and queue_delayed_work() functions add to a spec-
ified work queue a work item represented by a structure of the struct
work_struct type or the struct delayed_work type respectively. If the
work has to be performed on a specific cpu then the queue_work_on()
or the queue_delayed_work_on() function may be used instead. If de-
layed work is already scheduled then the period after which it can be per-
formed may be changed with the use of the mod_delayed_work() or the
mod_delayed_work_on() function. The function cancel_work_sync()
cancels scheduled work. If the work handler is already running then the
function will wait until it exits. Likewise the cancel_delayed_work_sync()
function cancels the delayed work. The cancel_delayed_work() also can-
cels delayed work, but in less safe fashion — it doesn’t check if the work
handler is already running. The flush_work() function waits until a spe-
cific work is performed. It returns immediately if the work is not scheduled
for execution.

21 / 24

Work Queues

The flush_delayed_work() does the same for specified delayed work.
Finally, the flush_workqueue() function forces the execution of all work
items added to a specified queue and waits until the last work handler
exits.
For more details on the work queue api please refer to the sixth laboratory
instruction.

22 / 24

Questions

?

23 / 24

The End

Thank You for Your attention!

24 / 24

Notes

Notes

Notes

Notes


	Introduction
	Softirqs
	Tasklets
	Work Queues
	The End

