
Operating Systems 2
Interrupts Handling

Arkadiusz Chrobot

Department of Information Systems

April 8, 2024

1 / 29

Outline

Introduction

Hardware Structure

Interrupt Servicing

Interrupt Handlers

Message Signaled Interrupts

Interrupts Control

2 / 29

Introduction

Interrupts are a vital part of every computer system. They are used for
handling exceptions and communication with i/o devices. System calls
are one of the examples of their applications. The interrupts implemen-
tation is very hardware-specific. This lecture gives a general overview of
the interrupts handling in the Linux kernel. The more advanced topics,
like inter-processor interrupts or interrupts balancing in a multiprocessor
systems are not described here.

3 / 29

Interrupts Overview

Linux recognizes two main types of interrupts:
exceptions These are high-priority interrupts associated with important

events (like integer division by zero, a page fault, a system
call) that require immediate handling by the cpu, and can-
not be ignored. Exceptions are usually synchronous, which
means that they may occur only as a result of cpu instruc-
tion. The kernel functions that handle exceptions are exe-
cuted in the process context and make use of value returned
by the current macro.

hardware interrupts These interrupts are used by the i/o devices to sig-
nal that they require servicing by the cpu. They are asyn-
chronous, which means they can occur at any time. Kernel
functions that handle these interrupts must act quickly, thus
they are performed in a special context called an interrupt
context. Hardware interrupts are the main topic of this lec-
ture.

4 / 29

Notes

Notes

Notes

Notes



Hardware Structure

The interrupt system needs a hardware support. The general design of
such hardware in a uniprocessor computer system is shown in the figure
1. Each i/o device has a special physical line, called an Interrupt Request
Line or irq line for short, that connects it with a special integrated circuit
called Programmable Interrupt Controller or pic for short. Every irq line
has a unique number (usually a natural number) that identifies the source
of the interrupt. The i/o device signals the interrupt by changing the
state of the line. The pic detects the change, determines the number of
the interrupt and notifies the cpu, which performs a special kernel function
called an interrupt handler or interrupt service routine that services the
interrupt. The discussed interrupt system uses a technique known as a
vectored interrupt, to quickly detect the source of the interrupt.

5 / 29

Hardware Structure

cpu pic i/o device
irq 0

Figure 1: Generic Hardware Structure for Interrupts

6 / 29

Hardware Structure

The vectored interrupts are efficient, only when each i/o device has its
own irq line. Unfortunately, some of the contemporary computer systems
(notably these based on x86 cpus) have limited number of these lines, so
they allow devices to share some of the lines. This means that the vectored
interrupt technique is combined with the polling interrupt technique. Each
time when the interrupt is signaled on a shared line, the kernel has to check
which of the devices has done it. This is a time-consuming task.
The Linux kernel programmers had to take into account all differences in
the design of the interrupt hardware support among many computer sys-
tems or even different versions of the same system. For example in the x86
cpu-based computers the basic pic was replaced with an Advanced Pro-
grammable Interrupt Controller (apic). Moreover, in multicpu systems
each cpu has its own apic called lapic.

7 / 29

Interrupt Servicing

To address these differences the Linux kernel programmers have split the
part of kernel responsible for handling interrupts into three layers:
high-level interrupt service routines it is a set of kernel functions (isrs)

responsible for processing the interrupts,
interrupt flow handling a part of the kernel code that takes care of the

differences between servicing level-triggered, edge-triggered,
(see Fig. 2) per-cpu, and other types of interrupts,

chip-level hardware encapsulation this layer is a low-level layer that is re-
sponsible for handling various pics in different computer
systems or sometimes in the same system.

All these layers are linked by the most important data structure of the
kernel interrupt handling subsystem: the interrupt descriptors array called
irq_desc. Each element of the array stores pointers to isrs and functions
handling the pics.

8 / 29

Notes

Notes

Notes

Notes



Interrupt Signalling

low level

ris
in

g
ed

ge

high level

falling
edge

Figure 2: Binary Signal

9 / 29

Interrupt Processing

When the cpu receives the interrupt signal, it automatically switches to
the system mode (if it wasn’t already in that mode) and performs a cpu-
specific kernel code written in assembly language, that saves the registers
on the process kernel stack and prepares the environment for perform-
ing functions written in the c language. The assembly code is in the
entry.S file specific to a given hardware platform (in case of x86 cpus
it is entry_32.S file for the 32-bit processors and entry_64.S file for the
64-bit processors). After the assembly code exits the control on most
hardware platforms is passed to the do_irq() function. Exceptions are
the computers based on Sparc, Sparc64 and Alpha cpus, but they are not
discussed in this lecture.

10 / 29

Interrupt Processing
The do_irq() Function

The implementation of the do_irq() function is also hardware-specific,
but its behaviour is generally always the same. First, it stores the val-
ues of registers from the process kernel stack to a structure of the struct
pt_regs type (which is also cpu-specific). Then it uses the interrupt num-
ber, which is stored in one of the registers, as an index in the irq_desc
array. Next, the do_irq() function blocks the irq line associated with the
interrupt by using some functions from the chip-level hardware encapsu-
lation layer that are pointed by the interrupt descriptor. For example, in
case of 32-bit x86 hardware platforms it uses the mask_and_ack_8259A()
function. For some of the interrupts it has to disable the entire interrupt
system (or at least the local interrupt system of the cpu that services the
interrupt). After blocking the irq line the function checks if there is any
isr registered for this interrupt. If so, it calls the routine.

11 / 29

Interrupt Processing
The do_irq() Function

If there is more than one isr registered for the specific interrupt, the
do_irq() function invokes them in succession and expects that one of
them will return the irq_handled value, meaning that the interrupt has
been serviced. If no isr has been registered for the interrupt the do_irq()
function signals an error when returning. When the interrupt is handled
the add_interrupt_randomness() function is called to supply the kernel
entropy pool with new values (explained latter), the irq line is unlocked
or the whole (local) interrupt system is re-enabled and the do_irq() ex-
its. Most of these operations are usually not preformed directly by the
do_irq() function by delegated to other functions such as handle_irq_event()
and ret_form_intr().

12 / 29

Notes

Notes

Notes

Notes



Interrupt Processing
Entropy Pool

The entropy poll contains values that are used for seeding two crypto-
graphically secure pseudorandom number generators implemented in the
kernel. These generators are available to user-space software via two char-
acter device files called /dev/random and /dev/urandom. These files can
be read just like regular text files. The first one blocks the read operation
when the requested amount of entropy is not available and the second one
never blocks. They both generate secure pseudorandom numbers, but in
very rare cases (usually when the numbers are needed during the initial-
ization of the kernel) it is more safe to use the /dev/random generator. In
modern kernels, all interrupts contribute to the entropy pool, but not di-
rectly. When an interrupt is handled the kernel reads several values from
different resources that are good sources of randomness, such as some of
the cpu registers.

13 / 29

Registering and Unregistering Interrupt Handler

For the device driver programmer the most important kernel functions as-
sociated with interrupt handling are these that allow her or him to register
or unregister the isr. The former has the following prototype:

int request_irq(unsigned int irq, irq_handler_t handler,
unsigned long irqflags, const char *name, void *dev)

The function returns zero on success and the -ebusy value on failure. It
not only registers the isr but also activates the irq line associated with
the interrupt. The function takes five arguments. The first one is the
number of the interrupt, the second is the address of the isr, the third one
is a flag, or a result of the bitwise or of non-conflicting flags.

14 / 29

Registering and Unregistering Interrupt Handler

In the linux/interrupt.h header file are defined many flags for register-
ing the interrupt handlers. The most interesting ones are the following:
irqf_timer — the isr will handle a timer interrupt, irqf_percpu — the
isr will be performed only by a specific cpu in a multiprocessor hardware
platform, irqf_oneshot — the irq line will not be re-enabled immedi-
ately after the isr exits, irqf_shared — the isr is registered for an irq
line shared by several i/o devices and also by several other isrs.

15 / 29

Registering and Unregistering Interrupt Handler

The forth argument of the request_iqr() function is a string that is
a name of the device that will signal the interrupt. The name is used
in proc/interrupts file1. It is a text file that contains statistics about
all handled (or not) interrupts, including the irq line number, the cpu
number, the interrupt type, the pic name, the device name, etc. Some
other statistics can be found in the proc/irq directories. Finally, the fifth
argument can be null if the irq line is not shared. If it is, than it should
be an address that uniquely identifies the isr, for example an address of
a structure associated with the device driver that contains the isr. This
address is required for correctly unregistering the isr. It is also used by
the interrupt handler itself to detect if the device that it should handle is
the interrupt’s source.

1The content of the file can be displayed on the screen by issuing the cat
/proc/interrupt command.

16 / 29

Notes

Notes

Notes

Notes



Registering and Unregistering Interrupt Handler

To unregister the isr the device driver programmer can use the free_irq()
function which has the following prototype:

void free_irq(unsinged int irq, void *dev)
The first argument for the function is the irq line number, the second can
be null if the line is not shared. Otherwise it must be the same address,
which was given as the fifth argument to the register_irq() function.

17 / 29

Registering and Unregistering Interrupt Handler
Threaded Interrupts

In the 2.6.29 kernel release a new way of servicing interrupts has been
added. It is so-called threaded interrupts and originates from the kernel
code branch for hard real-time systems. The main idea behind this new
solution is that the isr should exit as soon as possible, because it can-
not sleep. The rest of the work associated with handling the interrupt
is delegated to a special kernel thread. To register a thread and the isr
for handling a specific interrupt the request_threaded_irq() function is
used, which has the following prototype:

int request_threaded_irq(unsigned int irq, irq_handler_t
handler, irq_handler_t thread_fn, unsigned long flags, const

char *name, void *dev)
The function takes the same arguments as the request_irq() function,
except for the additional third one, which is a pointer to a kernel thread
function. The isr should be registered with the irqf_oneshot flag.

18 / 29

Interrupt Handlers

In the Linux kernel the interrupt handlers or isrs are kernel functions
written in the c language, which may also contain some assembly code.
The definitions of these functions are part of device drivers responsible for
handling the peripheral devices. These drivers are usually implemented as
kernel modules. The prototype of the isr must follow this pattern:

static irqreturn_t intr_handler(int irq, void *dev)
The name of a real isr should be different than the one in the pattern. By
the first parameter of the function is passed the interrupt number. The
value of the second parameter is important only when the isr is registered
for a shared irq line. It is the same unique address which is used for
registering the isr. The irqreturn_t type is defined with the help of the
typedef keyword and, depending of the kernel version, it is the int or
void type. It was introduced for backward compatibility reasons.

19 / 29

Interrupt Handlers

The isr can return one of the following values: irq_none — the inter-
rupt has not been serviced by the isr, irq_handled — the interrupt has
been serviced by the isr. To simplify returning these values the Linux
kernel programmers added the irq_retval(x) macro, which expands to
irq_handled when its argument is a non-zero number, and to irq_none
when it is zero. The isrs associated with threaded interrupts can return
a third value called irq_wake_thread which causes the kernel to activate
the thread associated with the handling of the specific interrupt. In the
past the isr had another parameter which was a pointer to the structure
of the struct pt_regs type. However, not all isrs needed registers val-
ues, so the parameter has been removed. These isrs that require values of
registers can obtain the address of the registers structure with the use of
the get_irq_regs() function.

20 / 29

Notes

Notes

Notes

Notes



Interrupt Handlers

The most important thing about Linux isrs is that they are performed in
the interrupt context. That means that their behaviour undergoes several
limitations. Primarily they must act quickly, because the irq could in-
terrupted some very important operations in kernel or in user-space. The
isrs are not associated with any process, hence they cannot invoke any
functions that could cause the process to sleep. For example the isr can-
not call the register_irq() function to register another isr. To put it
simply the isrs cannot sleep. To address these limitations the interrupt
handling code in Linux kernel is split into two parts, just like in the case
of other modern operating systems. The first part is called a top half and
the other a bottom half, although they are not necessarily equal. In the top
half are performed the most important operations associated with handling
the interrupt, that cannot be postponed. So, the top half is just another
name for the isr. The other operations are performed in the bottom half,
which actually is not a single mechanism, but a collection of mechanisms.

21 / 29

Interrupt Handlers

Most of bottom halves will be discussed in the next lectures, but threaded
interrupts are an example of such a mechanism. The isrs do not use the
value returned by the current macro. As it was mentioned already, they
are not associated with any process, so they do not need the descriptor
of the current process, but they use the kernel process stack, just like
other kernel functions. It should be reminded that the size of the stack is
limited to only two pages, so in case of x86 cpus it is 8KiB and for the
Alpha processors it is 16KiB. Moreover, there is a kernel patch that limits
that size to only one page, which is useful for the mpp (Massively Parallel
Processing) systems. In that case however the isrs get a separate stack
for their use only.
The isrs don’t have to be reentrant, because the Linux kernel doesn’t
support nested interrupts, i.e interrupts that may occur while their earlier
instances are serviced. However, in multiprocessor systems the isr may
use some synchronization methods if it shares resources with some other
code.

22 / 29

Message Signaled Interrupts

Modern devices that use such buses as usb, pci, pci-express need a lot of
interrupts, that are assigned to them dynamically (some of the interrupts
are assigned statically for historical reasons). This means that a lot of
irq lines has to be shared between these devices, which leads to many
issues. To address them the hardware engineers introduced so-called Mes-
sage Signaled Interrupts (msi for short). These interrupts are not signalled
by changing the state of a physical irq line but by storing a short mes-
sage (a few bytes) to a specific memory address. The first version of this
solution was introduced in the pci 2.2 standard. In the pci 3.0 standard
the possibility of individually masking these interrupts was added. This
version of the standard also allows the devices to have several individually
configured interrupts. This solution is called msi-x. Starting from the 4.8
kernel version, Linux provides an api for using these interrupts.

23 / 29

Message Signaled Interrupts

The api consists of three functions:
pci_alloc_irq_vectors() the function allocates interrupt vectors for

the pci device. It takes four arguments. The first one is
an address of the struct pci_dev type structure associated
with the device, the second one is the minimal number of
vectors (if required), the third one is the maximal number of
vectors. The last argument is one or more flags. On success
it returns zero, otherwise the -enospc value.

pci_irq_vector() the function associates an interrupt number with the
pci device. It takes two arguments, the address of the
struct pci_dev type structure and the interrupt number.
It returns zero on success and non-zero otherwise.

pci_free_irq_vectors() the function frees the allocated interrupt vec-
tors. It returns no value and as an argument takes the ad-
dress of a struct pci_dev type structure.

24 / 29

Notes

Notes

Notes

Notes



Message Signaled Interrupts

The following flags can be passed to the pci_alloc_irq_vectors() func-
tion:
pci_irq_legacy the pci device will use the interrupts signaled by the irq

line, instead of msi (default mode),
pci_irq_msi the pci device will use the basic msi,
pci_irq_msix the pci device will use the msi-x,
pci_irq_all_types the pci device will use any available kind of the in-

terrupt,
pci_irq_affinity in a multiprocessor system the function will spread

the interrupts to all available cpus.
The pci_irq_vector() function is used for obtaining an interrupt number
for which an isr can be registered with the use of the request_irq() or
request_threaded_irq() function.

25 / 29

Interrupts Control

The following kernel macros and functions are used for controlling the
interrupts system:
local_irq_disable() switches off a local interrupts system,
local_irq_enable() switches on a local interrupts system,
local_irq_save(unsigned long flags) saves the current state of the

interrupts and then disables them,
local_irq_restore(unsigned long flags) restores the given state of

the interrupts,
disable_irq_nosync(unsigned int irq) disables a given irq line and

immediately returns,
disable_irq(unsigned int irq) disables a given irq line and ensures

no interrupt handler is running for that line before returning,
enable_irq(unsigned int irq) enables the line switched off by the disable_irq_nosync()

function,

26 / 29

Interrupts Control

synchronize_irq(unsigned int irq) enables the irq line disabled by
the disable_irq() function,

irqs_disabled() returns nonzero if local interrupts system is disabled,
in_interrupt() returns zero in process context and nonzero in interrupt

context,
in_irq() returns nonzero if invoked in an isr, otherwise zero.

The synchronize_irq() function has to be called as many times as the
disable_irq() function was invoked. The same applies for the enable_irq()
and the disable_irq_nosyc() functions.

27 / 29

Questions

?

28 / 29

Notes

Notes

Notes

Notes



The End

Thank You for Your attention!

29 / 29

Notes

Notes

Notes

Notes


	Introduction
	Hardware Structure
	Interrupt Servicing
	Interrupt Handlers
	Message Signaled Interrupts
	Interrupts Control
	The End

