
Operating Systems 2
Process Scheduling, part 2

Arkadiusz Chrobot

Department of Information Systems

March 20, 2024

1 / 20

Outline

O(1) Scheduler Drawbacks

Scheduling Classes

Priorities

Fair Scheduling — Introduction

Completely Fair Scheduler

Earliest Eligible Virtual Deadline First

2 / 20

O(1) Scheduler Drawbacks

The O(1) Scheduler has some drawbacks inherited from multi-level queuing
or more precisely multilevel feedback queue scheduling:
▶ time slices associated with priorities are invariable, which means that

if there are only two low-priority processes in the system then they
will be able to run uninterrupted only for a very short period of time
and they will be preempted very often,

▶ the granulation of the time slices can be insufficient, i.e the length of
time slices allocated for two high-priority processes (for example −20
and −19) is similar, but time slices of two low-priority processes (for
example 18 and 19) differ much,

▶ the measurement of time slice consumption is not precise,
▶ heuristics used for measuring the interactivity level of a process are

not tampering-proof, which allows the processes to gain more cpu
time than they really require.

3 / 20

O(1) Scheduler Drawback

Some of those disadvantages were mitigated in the O(1) Scheduler, but
eradicating them turned out to be impossible. That is why the Linux
kernel programmers decided to rework the scheduler in the version 2.6.23
of the kernel.

4 / 20

Notes

Notes

Notes

Notes



Scheduling Classes

One of the most important additions to the new scheduler are the struc-
tures of the struct sched_class type called scheduling classes which rep-
resent a scheduling policy applied to a specified group of processes. Each
such a structure contains a set of function pointers that point to functions
performing the following activities according to a specific policy:
enqueue_task() adds a process to the run queue,
dequeue_task() removes a process from the run queue,
yield_task() allows a process to relinquish the cpu,
check_preempt_curr() checks if the current process has to be preempted

by the process that just woke up,
pick_next_task() chooses the next process to run,
put_prev_task() takes a part in the context switching,
set_curr_task() invoked when the scheduling policy of the current pro-

cess is changed,
new_task() responsible for allocating the cpu for new processes.

5 / 20

Scheduling Classes
Scheduling classes handle the following policies:
sched_fifo real-time processes scheduled with the use of the fcfs algo-

rithm,
sched_rr real-time processes scheduled with the use of the round-robin

algorithm,
sched_deadline real-time processes scheduled with the use of the edf

(Earliest Deadline First) algorithm; this policy has been in-
troduced in the 3.14 version of the kernel,

sched_normal regular processes scheduled by the cfs algorithm; this
policy corresponds to the sched_other policy from the
posix standard,

sched_batch scheduling policy for a low-priority, cpu-bound processes;
it is handled by the cfs scheduler,

sched_idle scheduling policy for low-priority processes which are run
when no other process is ready to run; also handled by the
cfs algorithm.

6 / 20

Scheduling Classes

Scheduling classes are linked together in a list, starting with classes for
the highest priority processes (the real-time ones) to the lowest priority
(the batch and idle processes). The schedule() function traverses the
list calling the pick_next_task() function (method) for each of the class.
The one that returns a non-null value has chosen the next process to
run. It is worth to notice that the scheduling classes are one of the several
examples of applying the concept of Object-Oriented Programming in the
Linux kernel, although the kernel itself is written in plain c, not in c++.

7 / 20

Scheduling Entities

In the 2.6.23 kernel version another important structure was introduced.
Its type is struct sched_entity. This structure allows the kernel to
schedule not only individual processes but also groups of such processes.
More generally — it allows scheduling so-called scheduling entities. Such
structures are new members of each process descriptor. An example of
group of processed scheduled together is the rt_bandwidth group for real-
time processes. It is assumed that 95% of each second of the processor time
is allotted to the real-time processes and the 5% for the regular processes.
That ratio can be changed by the system administrator. The group has
been introduced in the 2.6.23 version of the kernel, to prevent monopolizing
the cpu by the sched_fifo processes.

8 / 20

Notes

Notes

Notes

Notes



Priorities

Starting from the version 2.6.23 of the kernel, priorities of all processes
are static, with one exception. The priority of a regular process can be
temporally boosted to the real-time priority, when the process invokes a
system call that uses the so-called rt-mutex. This is to prevent the priority
inversion problem.

9 / 20

Fair Scheduling — Introduction

The Fair Scheduling is about providing for each of the processes a fair
share of the cpu computing power. To better understand how it works
let’s consider a perfectly multitasking processor. When such a cpu has to
run one and only one process it allocates 100% of its power to the process.
In case when it has to run n identical processes it allocates to each of
them 1

n of its power. As a consequence all processes runs n× slower than
a single process, but still they are performed simultaneously, and without
unnecessary breaks. Unfortunately, this scenario cannot be implemented
with the use of real-life processors. However, the cpu can be allocated to
the process basing on the information of how long it hasn’t been allowed
to use the cpu. If there is a single process in the system it can get the
cpu for as long as it needs, but when another process becomes ready it
immediately preempts the first one, because it used much less of the cpu
computing power.

10 / 20

Fair Scheduling — Introduction

Let’s consider another scenario in which two identical processes has to be
scheduled at the same time. The scheduler can calculate the time of run-
ning (the time when each process has assigned the cpu) of each of the
processes by assuming a targeted latency and allocating a share of it to
each of them. The targeted latency is a short period of time, typically
several milliseconds. However, it has to be longer then the time needed
to switch processes. It should be noted, that extending the scenario to
n processes leads to an issue. When the number of processes approaches
infinity the time when they are allowed to use the cpu goes to zero. There-
fore some bottom limit for that time has to be defined and it is called the
minimum granularity. In real-life systems some of the processes are more
important than the others, which is expressed by their priorities. In the
fair scheduling the priorities are converted into weights which are used by
the scheduler to compute the portions of the targeted latency for each of
the processes.

11 / 20

Completely Fair Scheduler

The Completely Fair Scheduler (the cfs for short) has replaced the O(1)
Scheduler in the Linux kernel. It is authored by Ingo Molnár, who was in-
spired by the ideas of Con Kolivas, an Australian kernel programmer. The
change was introduced to address some issues with scheduling interactive
processes for desktop computers. As the name suggests the scheduler im-
plements fair scheduling, although it is not completely fair if the number
of ready-to-run processes is large. Fortunately it is a very rare scenario.
The CFS is implemented in the kernel/sched/fair.c file. It utilizes
two 40-elements arrays to convert priorities into weights and weights to
priorities. The first one is named sched_prio_to_weight. The weight for
the default priority (the nice level equal 0) is set to 1024. The weights
of processes of higher priorities are computed by multiplying this value in
succession by powers of 1.25. The weights for lower priorities are calculated
by dividing the default weight in succession by powers of the 1.25. The
other array is called sched_prio_to_wmul and it stores the inverses of the
weights.

12 / 20

Notes

Notes

Notes

Notes



Completely Fair Scheduler

The processes are scheduled according to their virtual runtime which is an
actual runtime weighted by the by the number of ready-to-run processes
and their priorities. The process with the shortest virtual runtime gets
the cpu as next. The virtual runtime is measured in nanoseconds and
stored in the vruntime member of the se field of the process descriptor.
This field is a structure of the struct sched_entity type. The value of
the vruntime member is updated periodically or after some events by the
update_curr() function. The targeted latency is stored in the variable
of the name sched_latency_ns and is set by default to 20ms. This value
can be changed by the system administrator. The maximal number of
processes that has to be scheduled in that period of time is stored in the
sched_nr_latency and its updated by the kernel. The minimal amount
of time (the bottom limit) in which each process is allowed to run is set to
1ms.

13 / 20

Completely Fair Scheduler

The run queue for the cfs is actually a red-black tree. It is a type of
binary search tree in which each node has an additional property that is
called a colour. The collocation of colours in that tree is governed by the
following principles:

1. The root of the tree is always black.
2. Each node is either black or red.
3. Children of the red node are always black.
4. Leafs are always black.
5. Every simple path from a given node to its descendant leaf goes

through the same number of black nodes.
If all those conditions are fulfilled, the tree is balanced. When one of them
is not satisfied, which is a consequence of adding or removing a node from
the tree, then the balance has to be restored by left and right rotating
some of the subtrees or changing colours of several nodes.

14 / 20

Completely Fair Scheduler

Linux kernel has its own generic implementation of a red-black tree (see
the third instruction for the laboratory classes; for more details on the red-
black trees see the “Introduction to Algorithms” book by T. H. Cormen et
al.). The cfs uses this implementation to sort the processes according to
their virtual runtime. The leftmost node in the tree specifies the process
with the shortest virtual runtime. If its shorter than the virtual runtime
of the current process than process represented by the leftmost node of
the tree preempts the current one. Locating the leftmost node in the red-
black tree takes O(log2(n)) time, where n is the number of ready-to-run
processes. To speed up finding the node the kernel function responsible
for adding a new node to the tree sets a special pointer when it inserts the
leftmost node. Detecting such a case is quite easy: if the function always
takes the left branch while traversing the tree to insert a new node, then
it means that the new node is the leftmost one.

15 / 20

Completely Fair Scheduler

If the cfs scheduler finds the pointer to be null then it means the sched_normal
policy class is empty and it should move to another class (sched_batch).
Just like the O(1) Scheduler, the cfs tries to run the new child process
before its parent. To achieve the goal it sometimes swaps virtual runtimes
of both processes.
It takes the cfs longer to perform operations on the queue of runnable
processes, when compared with the O(1) Scheduler. However, the cfs is
more fair as it goes to the scheduling of interactive processes. That’s why
it has replaced the latter in Linux kernel.

16 / 20

Notes

Notes

Notes

Notes



Earliest Eligible Virtual Deadline First

In the 6.6 version of the Linux Kernel, the cfs scheduler has been re-
placed by the Earliest Eligible Virtual Deadline First eevdf scheduler im-
plemented by Peter Zijlstra. The reason for that is that the new scheduling
algorithm is better at handling latency requirements and modern CPUs.
The latency is the time that it takes to allocate the CPU to the process
that needs it. Some processes run for a short time, but need the CPU
as soon as possible. These are latency-sensitive. Other may require the
CPU for a longer period of time, but they can wait for it. The modern
CPUs are build from cores that are functionally equivalent, but differ
in performance. Intel calls them (confusingly) P-cores and E-cores. The
P(erformance)-cores cores are performance-oriented and the E(fficiency)-
cores are energy efficiency-oriented. Scheduling processes on such CPUs
needs a different approach then the one taken in the cfs.

17 / 20

Earliest Eligible Virtual Deadline First

The eevdf algorithm was first published in a paper by Ion Stoica and
Hussein Abdel-Wahab. It is not a real-time scheduler and it is similar to
cfs. Just like the latter, the eevdf allocates a fair share of the cpu time
for each of the processes, taking their priorities into account. However,
after all of them use their allocated time, the scheduler calculates their
lag, which is the difference between the cpu time allocated to a process
and the actual cpu time it got. Processes with a greater or equal zero
lag are marked as eligible to run, because they didn’t receive their fair
share of cpu time. The cpu should be allocated to these processes in the
first place. Other processes, with negative lag have to wait for a while
to become eligible to run. This wait-time is called an eligible time. The
eligible time is added to the virtual runtime of each process. The sum is
called the virtual deadline and the process should not receive the cpu time
until its deadline is up.

18 / 20

Questions

?

19 / 20

The End

Thank You for Your attention!

20 / 20

Notes

Notes

Notes

Notes

https://lwn.net/Articles/925371/
https://www.youtube.com/watch?v=F4pibcYbT9U
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564

	O(1) Scheduler Drawbacks
	Scheduling Classes
	Priorities
	Fair Scheduling — Introduction
	Completely Fair Scheduler
	Earliest Eligible Virtual Deadline First
	The End

