
Operating Systems 2
Process Scheduling, Part 1

Arkadiusz Chrobot

Department of Information Systems

March 11, 2024

1 / 22

Outline

Process Scheduling

Original Unix CPU Scheduler

O(1) Scheduler

Scheduler User-Space api

2 / 22

Process Scheduling

Scheduling in operating systems is making a decision about allocating a
resource to a process. Usually, but not always when we talk about schedul-
ing we mean process scheduling i.e. deciding on allocating the cpu to a
process. The part of the kernel that decides which process should use the
cpu as next is called a process scheduler or simply a scheduler.
Most of modern operating systems are a multitasking systems, which means
that they interleave execution of processes. There are two types of such
systems: cooperative and preemptive. In the former the process voluntarily
decides when to stop using the allocated cpu. The main drawback of that
approach is that a misbehaving process may block the entire system. The
preemptive system may regain the cpu from the currently running process
at any time. Linux, like other popular operating systems is a preemptive
system.

3 / 22

Linux Scheduler

The main topic of this lecture is the O(1) Scheduler which was used in the
kernel from the version 2.6.0 until 2.6.22. Its replacement will be discussed
in the next lecture. Although the scheduler is no longer used it had many
interesting elements that are worth to learn. The O(1) Scheduler is based
on the original Unix scheduler, so the latter will be described first.

4 / 22

Notes

Notes

Notes

Notes



Original Unix Scheduler

The original Unix scheduler used the Multiple Queues scheduling. The
processes in this schema are divided into two groups: regular processes
with sched_other scheduling policy and real-time processes with two
scheduling polices sched_rr and sched_fifo. The latter can be run
only by privileged users. The sched_fifo processes are not preemptive.
The sched_rr processes are scheduled round-robin with long time in-
tervals, which are called in Unix terminology time slices. The real-time
processes have priorities ranging from 99 (highest) to 1 (lowest). The pri-
ority of each real-time process is static (time-invariant). Which means
that when the sched_rr process consumes its time slice or when the
sched_fifo process yields they are given the same priority in the next
scheduling round.

5 / 22

Original Unix CPU Scheduler

The sched_other processes can be run by any user. They always got
lower priority than the real-time processes and they undergo the round-
robin scheduling. The priority of the process consists of two parts. The
first one is a static priority. It is set by the user and called a nice level,
which ranges from −20 (highest) to 19 (lowest). The second part is a
dynamic component which is added to the static priority (or base priority)
after each scheduling round and which can effectively decrease or increase
the total priority of the process. This means that the processes can change
the scheduling queue in the next scheduling round (see Fig. 1). The default
nice level is 0. According to the posix standard with this level has to be
associated a time slice equal or longer than 20ms. Unix awards the i/o-
bound processes, because those are usually the interactive processes. On
the other hand it also tries to be fair for the cpu-bound processes.

6 / 22

Original Unix CPU Scheduler
Multi-Queue Process Scheduling

low level priority sched_other processes (1 ÷ 19)

normal priority sched_other processes (0)

high priority sched_other processes (−20 ÷ −1)

sched_fifo and sched_rr processes (99 ÷ 1)

Figure 1: Multi-Queue process scheduling scheme (for reference only)

7 / 22

O(1) Scheduler

The O(1) Scheduler is a modification of the original Unix scheduler au-
thored by Hungarian programmer Ingo Molnár. Its features are as follows:

1. implements O(1) scheduling,
2. implements (almost) ideal smp scaling,
3. implements thread-cpu binding in the smp mode,
4. promotes interactive processes,
5. is optimized for the common case where more than one process is

ready to run.

8 / 22

Notes

Notes

Notes

Notes



O(1) Scheduler

The O(1) Scheduler binds with each cpu in the system a single queue of
processes that are waiting for allocation of the processor. The queue is a
data structure of the type struct runqueue defined in the kernel/sched.c
file, together with some useful macros. The access to the queues is syn-
chronized with the use of spin-locks. Those variables are always locked in
the same sequence to prevent deadlocks. The runqueue consists of two
pointers to priority arrays, active and expired.
The priority array is a structure of the struct prio_array type. Inside
this structure are two fields. The first one is an array which has 140
elements, which are pointers to circular doubly lists of processes (actually,
elements that represents them for the scheduler). Priorities of the processes
are recalculated inside kernel in such a way that the real-time processes
get priorities ranging from 0 (highest) to 98 (lowest; 99 is unused) and
the regular processes get priorities ranging from 100 (highest) and 139
(lowest). In that way the priorities can be used directly as indices in the
arrays.

9 / 22

O(1) Scheduler

The other member of the struct prio_array structure is a bitmap (see
Fig. 3) used for quickly locating a non-empty queue of highest priority in
the array. The bit associated with the queue is set (its value is 1) and its
position in the bitmap is the index of the array.
As it was stated in the previous slide the runqueue has two pointers to
such arrays. The first one points to the array of active priorities. It gath-
ers processes that haven’t yet used their time slices (the sched_rr and
sched_other processes) or are awaiting allocation of the cpu (sched_fifo
processes). The other pointer points to an array of expired priorities. A
process that yields or consumes completely its time slice expires and goes
to that array, awaiting there for the next scheduling round. Linux cal-
culates a new priority for a sched_other process as soon as it expires,
unlike the original Unix, which calculates them after all processes have
expired. After a while the array of active priorities becomes empty and
all the processes are in the array of expired priorities. The kernel switches
their roles efficiently by swapping their pointers (see Fig. 2).

10 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_fifo 2

sched_rr 1

sched_fifo 1

sched_other 4

sched_other 3

sched_other 2

sched_other 1

sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_rr 2

sched_fifo 2

sched_rr 1

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

Notes

Notes

Notes

Notes



O(1) Scheduler
active expired

sched_rr 2

sched_rr 1

sched_rr 2

sched_fifo 2

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_rr 1

sched_rr 2

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_rr 2

sched_rr 1

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_rr 1

sched_rr 2

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

Notes

Notes

Notes

Notes



O(1) Scheduler
active expired

sched_rr 2

sched_rr 1

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_other 1

sched_other 4

sched_other 3

sched_other 2 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_other 2

sched_other 1

sched_other 4

sched_other 3 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

Notes

Notes

Notes

Notes



O(1) Scheduler
active expired

sched_rr 2

sched_other 3

sched_other 2

sched_other 1

sched_other 4 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_other 4

sched_other 3

sched_other 2

sched_other 1 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_other 4

sched_other 3

sched_other 2 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_other 4

sched_other 3 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

Notes

Notes

Notes

Notes



O(1) Scheduler
active expired

sched_rr 2

sched_other 4 sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler
active expired

sched_rr 2

sched_fifo 1

sched_fifo 2

sched_rr 2

sched_rr 1

sched_other 1

sched_other 2

sched_other 3

sched_other 4

Figure 2: O(1) Scheduler priority arrays (for reference only)

11 / 22

O(1) Scheduler

0

0

1

1

1

2

0

3

0

4

0

5

1

6

1

7

Figure 3: Bitmap Example (for reference only)

12 / 22

Notes

Notes

Notes

Notes



O(1) Scheduler
Context Switching

The O(1) Scheduler algorithm is implemented in the schedule() function.
Its main responsibility is only to choose the next process that should run
from the ones that wait for allocation of the cpu, but it also calls the
context_switch() function which switches the processes. The code of the
schedule() function is simple, cpu architecture independent and effective.
The time of choosing next process to run doesn’t depend on the total
number of ready to run processes. The code of the context_switch()
function is on the other hand cpu architecture dependent. Its efficiency
depends on the organization of the processor. Usually it takes longer to
switch context in the risc than in the cisc processors.

13 / 22

O(1) Scheduler
The sched_other Processes Scheduling

The kernel can change the priority of a regular process basing on its in-
teraction level in the previous round of scheduling. The priority of less
interactive processes is decreased by +5 and the priority of more interac-
tive processes is increased by −5. Linux uses some heuristics to evaluate
the level of interaction of each of the processes. The evaluation is based on
the ratio of the total length of the time when the process was active to the
total length of the time that process spend waiting. The often the process
waits the more interactive it is. The interactive processes get longer time
slices. The default time slice (nice level 0) is 100ms, the longest available
time slice for the regular processes is 200ms (nice level −20) and the short-
est is 10ms (nice level 19). If a process is highly interactive the kernel
do not expires it after it consumes its time slice, but awards it with the
same priority in the active priorities array. This however may cause star-
vation of the already expired processes. To prevent this the kernel runs
periodically the expired_starving() macro.

14 / 22

O(1) Scheduler
The New Process Scheduling

A child process gets half of its parent remaining time slice. This amount
is also granted to the parent. After both processes expire a new priority
and hence new time slice is allocated for both of them.

15 / 22

O(1) Scheduler
Awaiting Processes

A process doesn’t have to consume its time slice in one turn. It may for
example invoke a system call and await for its result. In that case it is
not eligible to the task_running state and cannot be in the runqueue.
Hence, it is moved to an appropriate queue of waiting processes, of the
wait_queue_head_t type (see the 5th laboratory instruction for details)
and the schedule() function is called which chooses another process for
running. The sleeping process can be awaken with the use of, for example,
the wake_up() function when the event it is waiting for occurs. Then it
is moved to the runqueue with the remaining time slice it has. If this
process if of higher priority than the current one then the need_resched
flag is set.

16 / 22

Notes

Notes

Notes

Notes



O(1) Scheduler
Processes Preemption

The process is preempted when the need_resched flag is set. It’s one
of the bits in the flags member of the thread_info structure. As a
consequence of setting this flag the schedule() function is called which
chooses a next process and calls the context_switch() function which
swaps the current and the next process by changing the virtual memory
mapping (it invokes the switch_mm() function for this task) and setting
the context of the cpu. The latter task is performed by the switch_to()
function (called by the context_switch() function), which also preserves
the kernel stack and the registers for the current process.
The user process can be preempted when the control returns to the user
space, after a system call or an interrupt handling. A kernel thread may
be preempted when the control returns from an interrupt handling, when
its preempt_count counter (another member of the task_info structure)
is set to zero, when it calls directly the schedule() function or when it
starts waiting for some event.

17 / 22

O(1) Scheduler
Scheduling in Multiprocessor Systems

The O(1) Scheduler also handles the multiprocessor scheduling. In such
systems some processes may be associated with one and only one cpu, but
usually most of them run on any available processor. In that case it is
sometimes necessary to balance the workload of the cpus, which means
that some of the processes can be moved from one runqueue to the other.
This is accomplished by the load_balance() function, which is activated
by the kernel when one of the runqueues is empty. It is also invoked
periodically by the timer interrupt. In that case it moves processes when
one of the runqueues is 25% longer than the others.

18 / 22

Scheduler User-Space api
There are user-space functions that allow the processes to impact the
scheduling policy (some privileges for some of them are required):
▶ nice() — sets the nice level,
▶ sched_setscheduler() — sets the scheduling policy,
▶ sched_setparam() — sets parameters for scheduling policy,
▶ sched_get_priority_max() — returns the maximal priority for a

given scheduling policy,
▶ sched_get_priority_min() — returns the minimal priority for a

given scheduling policy,
▶ sched_rr_get_interval() — returns the time slice length of a sched_rr

process,
▶ sched_setaffinity() — bounds a process or thread to specified

cpus,
▶ sched_getaffinity() — returns a bitmap that specifies on which

cpus the process is allowed to run,
▶ sched_yield() — makes the process to relinquish the cpu.

19 / 22

Scheduler User-Space api

If the O(1) Scheduler is used then calling the sched_yield() function is
expensive for the process because, it has to wait until the next schedul-
ing round to get the cpu. The process becomes immediately expired.
This function in unavailable for the kernel threads. They should use the
yield() function instead.

20 / 22

Notes

Notes

Notes

Notes



Questions

?

21 / 22

The End

Thank You for Your attention!

22 / 22

Notes

Notes

Notes

Notes


	Process Scheduling
	Original Unix CPU Scheduler
	O(1) Scheduler
	Scheduler User-Space api
	The End

