
Operating Systems 2
Networking

Arkadiusz Chrobot

Department of Information Systems

June 25, 2025

1 / 17

Outline

Introduction

The tcp/ip Stack

Network Device Drivers

The Netfilter

2 / 17

Introduction

Unix is one of the first operating systems that offered an implementation
of network communication. Nowadays, most of the Internet servers run on
Linux, the Unix-like operating system. In this lecture a short overview of
the Linux kernel network subsystem is given. This subject is complex, so
only the most important concepts are presented. The content is split into
three parts:
I kernel-level packet processing,
I network device drivers,
I the netfilter implementation.

3 / 17

The tcp/ip Stack

The part of the kernel that is responsible for handling the incoming and
outgoing network packets is called the tcp/ip stack. Figure 1 shows the
packet flow inside the Linux kernel1. The Linux kernel network subsystem
consists of three parts that correspond to three layers of iso/osi model —
the data link layer, the network layer and the transport layer. To send data
through a network a user process invokes an appropriate system call that
activates the write() method of a file object associated with the process
network socket. Depending on the transport protocol used by this socket
the write() method calls either the tcp_sendmsg() or udp_sendmsg()
kernel function. These functions are responsible for building a header of
the required protocol.

1The lecture is based on: https://docs.kernel.org/networking/index.html and
William Stallings “Operating Systems: Internals and Design Principles”, Pearson Edu-
cation, Inc, London, 2005

4 / 17

Notes

Notes

Notes

Notes

https://docs.kernel.org/networking/index.html


The tcp/ip Stack

user process

socket system calls wake_up_interruptible()

socket layer

tcp_sendmsg() tcp_data_queue()
udp_sendmsg() udp_queue_rcv_skb()

tcp udp

ip_queue_xmit() tcp_v4_rcv()
ip_push_pending_frames() udp_rcv()

ip

network device

outgoing request interrupt

dev_queue_xmit()

ip_rcv()

network device driver

softirq[net_rx_action()]

low-level packet reception

netif_rx()

deferred packet reception

Figure 1: Incoming and outgoing packets processing inside the kernel

5 / 17

The tcp/ip Stack

The transport protocol header is attached to the data from the user pro-
cess. Then a function responsible for creating and adding to the packet an
ip header is invoked. In case of a udp packet it is the ip_push_pending_frames()
function. For the tcp packet the ip_queue_xmit() is called. The packet
with all required headers is passed to a network device with the help of the
dev_queue_xmit() function. However, before the packet will be send, its
route to the destination host (a computer or other device in the network)
must be set. This is the responsibility of the ip_route_output() function
that checks caches or (if necessary) routing tables to determine the packet
destination. Should the packet be sent to other hosts in the network, then
it is further processed by the ip_output() function.
When a network device receives an incoming packet it saves the packet to a
buffer and often triggers an interrupt. Optionally two other interrupts may
be raised when a transmission of a packet is finished or when a transmission
exception occurs.

6 / 17

The tcp/ip Stack

There are cases when the network device doesn’t trigger the interrupt upon
receiving a packet. This is explained in the next section where the napi
is described. The interrupt handler passes the packet within the buffer to
the netif_rx() function that allocates memory for another buffer, where
it copies the packet and then sets a driver pointer to point to the packet ip
header. Finally, the netif_rx() function adds the buffer to a queue. All
packets from the queue are processed by the ip_rcv() function that calls
the ip_local_deliver() function. The latter invokes the tcp_v4_rcv()
function for tcp packets or the udp_rcv() function for udp packets. Next,
functions informing the user process that a packet has arrived are called.
In case of tcp packet it is the tcp_data_queue() function and for the
udp packet it is the udp_queue_rcv_skb() function.

7 / 17

The tcp/ip Stack

The main data structure used by the kernel network subsystem is the
packet buffer called sk_buff. The data type of this buffer is struct
sk_buff. The structure stores not only the received or sent data but
also metadata required for processing the packet. The metadata are lo-
cated in the packet header. The packet buffer is designed to be effi-
ciently transferred from one queue to another. If it is copied then only
its header is duplicated. The header has three fields (members) that point
to the private headers storing metadata associated with the three layers
of iso/osi model. The transport_header points to the transport layer
header. The network layer header is pointed by the network_header. Fi-
nally the mac_header points to the data link layer header. All packet
buffers are stored in a queue implemented as a doubly linked list.

8 / 17

Notes

Notes

Notes

Notes



Network Device Drivers

The main data structure used by a network device driver is a structure of
the struct net_device type. The most important fields of this structure
are: the mtu — it specifies the maximum size of a packet that can be
transmitted by the device, the flags — it specifies the state of the device,
the dev_addr — points to the mac address, the promiscuity — it is a
counter that stores the number of requests to set the device in a promis-
cuous mode and the ip_ptr — it points to the part of packet buffer that
stores ipv4 specific data, the rx_handler — points to a receiver interrupt
handler, the netdev_ops — points to a structure of pointers to functions
performing such operations as sending a packet.
Earlier implementations of network device drivers required the device to
acknowledge every packet reception by triggering an interrupt. In effect
a heavy network traffic could cause a kernel overload. In the 2.6 kernel
series a new api for network device drivers was created and named napi.

9 / 17

Network Device Drivers

The napi enables the driver to switch the network device to a polling mode
and allow it to accumulate a number of incoming packets that are later
processed by the kernel. This reduces the number of interrupts triggered
by the device and as a consequence lowers the kernel load. Some of the
incoming packets can be dropped before they are passed for processing to
the kernel. It is called packet throttling. The napi requires a buffer in
the ram for dma transmissions or a hardware support in a form of a dma
ring.

10 / 17

The Netfilter

The netfilter (the name is an abbreviation of the expression “Network Fil-
ter”) is a set of function pointers, called hooks, that are located in strategic
places inside the tcp/ip stack. These pointers can be used for creating
firewalls or nat (Network Address Translation) subsystems. Functions
pointed by hooks are usually implemented inside a kernel module2. There
are five hooks in the kernel network subsystem:
nf_ip_pre_routing functions associated with this hook are called when

a packet is received,
nf_ip_local_in functions associated with this hook perform processing

of packets delivered to the host,
nf_ip_forward functions associated with this hook perform processing of

packets that should be forwarded to other hosts,

2http://www.paulkiddie.com/creating-a-netfilter-kernel-module-which-filters-udp-packets
11 / 17

The Netfilter

nf_ip_post_routing functions associated with this hook perform pro-
cessing of packets with established routes that are intended
to be sent,

nf_ip_local_out functions associated with this hook perform processing
of packets that were sent locally.

Each function associated with any of the hooks can perform any operation
on a packet that is necessary, but it has to eventually return one of the
following values:

nf_accept the packet is accepted for further processing,
nf_drop the packet is rejected,

nf_repeat the function call should be repeated for this packet,
nf_stolen the function “steals” the packet, which means that this packet

will be processed in a different way than the other packets,

12 / 17

Notes

Notes

Notes

Notes

http://www.paulkiddie.com/creating-a-netfilter-kernel-module-which-filters-udp-packets


The Netfilter

nf_queue the packet is added to a queue from where it will be trans-
ferred to the user-space,

nf_stop processing of the packet is stopped.
A single function associated with a hook is represented by a structure of
the struct nf_hook_ops type. The definition of the type is given in the
Listing 1. The list field allows these structures to be stored in a linked
list. The hook field is a pointer to the packet processing function. The dev
field is a pointer to a structure that represents the network device. The
priv member is a pointer to an area of the memory that stores private
data of the packet processing function. The pf field stores the identifier
of the protocol family. Packets of this protocol will be processed by the
function. The hooknum field stores the hook number and the priority
field stores the function priority that determines the order in which the
packet processing functions are performed (the nf_ip_pri_first constant
defines the highest priority).

13 / 17

The Netfilter

1 struct nf_hook_ops
2 {
3 struct list_head list;
4 nf_hookfn *hook;
5 struct net_device *dev;
6 void *priv;
7 u_int8_t pf;
8 unsigned int hooknum;
9 int priority;

10 };

Listing 1: The definition of the struct nf_hook_ops

14 / 17

The Netfilter

Structures of the struct nf_hook_ops type are registered with the use of
the nf_register_net_hook() function and unregistered with the help of
the nf_unregister_net_hook() function. The data type of the value re-
turned by the packet processing function is unsigned int3. The function
takes three arguments: an address of its private data (it is passed by the
void * type parameter), an address of a packet buffer (the buffer is of the
struct sk_buff type) and finally an address of a structure that stores the
state of the hook. This structure is of the struct nf_hook_state type.

3Possible return values were described in earlier slides.
15 / 17

Questions

?

16 / 17

Notes

Notes

Notes

Notes



The End

Thank You for Your attention!

17 / 17

Notes

Notes

Notes

Notes


	Introduction
	The tcp/ip Stack
	Network Device Drivers
	The Netfilter
	The End

