
Software Engineering — Dynamic Testing, Part
One

Arkadiusz Chrobot

Department of Information Systems, Kielce University of Technology

Kielce, December 9, 2024

1 / 41



Outline

1 Introduction

2 Functional Testing

3 Structural Testing

4 Integration Testing

5 System Testing

2 / 41



Motto

Motto

”Beware of bugs in the above code; I have only proved it correct, not tried
it.”
Donald E. Knuth

3 / 41



Introduction

Introduction

This lecture discusses dynamic testing in more details. The topics of test
levels and test methods are covered here.

4 / 41



Introduction

Testing Levels

There are four levels of dynamic tests:
unit tests apply to the smallest components of code, like functions;

integration tests check the interaction of components;
system tests verify the completed version of software;

acceptance tests prove to stakeholders, that the software meets require-
ments.

5 / 41



Introduction

Acceptance Tests

In the case of custom software the Acceptance Tests may be performed by
the software developers, but more often they are made by the customer
(so-called User Acceptance Tests or UATs). If the customers lack required
assets to do such tests or want to be objective, they may outsource accep-
tance tests to a third party company.
For generic-purpose software, the Alpha, and Beta tests may be applied.
The Alpha Testing is performed on-premise by a group of selected clients of
the software company. The Beta Testing is done on clients’ computers with
the use of a time-limited or otherwise restricted version of the software.

6 / 41



Introduction

Testing Levels

Unit
Testing

Programmers

Integration
Testing

Testing Team

System
Testing

Testing Team

Figure: Testing levels and responsible parties

7 / 41



Introduction

Testing For Defects

Dynamic testing, especially testing for defects, is about conducting exper-
iments that verify if the software behaviour and its outcomes adhere to its
specification. The (formal or informal) description of such an experiment
is called a test case. It defines the input data for a test and specifies the
expected behaviour and outcomes of the software under the test (see Fig-
ure 2).
The main difficulty in testing is designing the smallest possible number of
relevant test cases (see Figure 3). The quality of testing can be estimated
using metrics, that will be discussed in the next lecture. However, good
quality tests can be only achieved by using a systematic method of de-
signing test cases. The two most commonly used methods for testing are
functional testing and structural testing.

8 / 41



Introduction

Testing For Defects

Designing
Test

Cases

Test
Cases

Preparation
of Test

Input Data

Test
Data

Tests
Running

Test
Results

Comparison
of Test
Results

And Test
Cases

Test
Reports

Figure: Testing process

9 / 41



Introduction

Testing For Defects

Input Test Data

Test Outputs

Software

I

Oe

I — input data causing software misbehaviour
Oe — output data revealing defects

Figure: Model of Testing

10 / 41



Functional Testing

Functional Testing
Equivalence Class Partitioning (ECP)

The Functional Testing is also known as Black-Box Testing. In this method,
the source code of tested software is either unavailable, or too complex to
analyse. Only the specification of the software is known, that describes
what the software does. Functional testing may be applied for every level
of tests. The first step in designing appropriate test cases for black-box
testing is partitioning the set of input data into subsets called Equivalence
Classes. Each equivalence class includes data of similar characteristics,
thus processed similarly by the software (see Figure 4).

11 / 41



Functional Testing

Functional Testing
Equivalence Class Partitioning (ECP)

Software

Valid Data Invalid Data

Output Data

Figure: Equivalence Class Partitioning (ECP)

12 / 41



Functional Testing

Functional Testing
Boundary Testing

The designer of test cases should not only choose input data from the
”middle” of equivalence classes, but also data that ”lie” on its boundaries
(so-called boundary values or edge cases), are close to the boundaries or
are just behind these boundaries (see Figure 5).

13 / 41



Functional Testing

Functional Testing
Boundary Testing

Input Values Ranges

Number of Input Values

3

4 7
11

10

9999

10000 50000 99999

100000

Less then 4 Between 4 and 10 More than 10

Less than 10000 Between 10000 and 99999 More than 99999

Figure: Boundary Testing

14 / 41



Functional Testing

Functional Testing
Example

Let’s suppose that we want to test a software component, that tries to
locate a given value in a sequence of numbers. The formal specification of
the component is given in the next slide.

15 / 41



Functional Testing

Functional Testing
Example

Specification
procedure Search (Key:elem; T:elem array; Found: in out

boolean; l: in out elem_index);
Pre-condition

-- The array has at least one element.
t’first <=t’last

Post-condition
-- Value is found and its location is in l.
(Found and t(l)=Key)

or
-- Value is not in the array.
(not Found and not(exists i, t’first <=i<=t’last, t(i) = Key))

16 / 41



Functional Testing

Functional Testing
Example

By analysing the specification and by following the test case designing
methods described earlier, we can define the following equivalence classes:

Array Values(s)
Only one element. Is in array.
Only one element. Not in the array.
More than one element. Is in the first element.
More than one element. Is in the last element.
More than one element. Is in the middle element.
More than one element. Is not in the array.

17 / 41



Functional Testing

Functional Testing
Example

Based on the equivalence classes we can design the following test cases:

Input Sequence (T) Key Result (Found, L)
17 17 true, 0
17 0 false, ??
17,29,21,23 17 true, 0
41,18,9,31,30,16,45 45 true, 6
17,18,21,23,29,41,38 23 true, 3
21,23,29,33,38 25 false, ??

18 / 41



Structural Testing

Structural Testing

In Structural Testing (also known as White-Box Testing or Clear Box Test-
ing, Transparent Box Testing, Glass Box Testing) the source code of tested
component is available. This allows the test designer to derive additional
test cases from the code (see Figure 6). This method may be applied to
unit tests and to some extent to integration tests.

19 / 41



Structural Testing

Structural Testing

Component
Code

Test Output

Test Data

SpecifiesTest

Figure: Structural Testing

20 / 41



Structural Testing

Structural Testing
Example — Binary Search

In the next slide is presented method in Java, that tries to locate a value
(key) in an array (elemArray) applying the binary search algorithm. The
sole fact of using such an algorithm defines an additional pre-condition:
the values in the array should be in a non-descending order.

21 / 41



Structural Testing

Structural Testing
Example — Binary Search

public static Result search(int key, int elemArray[]) {
int bottom = 0;
int top = elemArray.length-1;
while(bottom<=top) {

int middle = bottom + (top-bottom)/2;
if(elemArray[middle]==key)

return new Result(middle,true);
if(elemArray[middle]<key)

bottom=middle+1;
else

top = middle-1;
}
return new Result(-1,false);

}

22 / 41



Structural Testing

Structural Testing
Equivalence Class For Binary Search

Knowing that the tested method uses the binary search algorithm, we can
define two more equivalence classes — sequences of numbers where the
value to find is stored in the left and the right neighbour of the middle
element (see Figure 7).

Equivalence Classes

Values<(M) Values>(M)

Middle (M)

Figure: Equivalence Classes For Binary Search

23 / 41



Structural Testing

Structural Testing
Test Cases For Binary Search

The following test cases may be defined for the search() method:

Input Sequence (T) Key Result (Found, L)
17 17 true,0
17 0 false,??
17,21,23,29 17 true,0
9,16,18,30,31,41,45 45 true,6
17,18,21,23,29,38,41 23 true,3
17,18,21,23,29,33,38 21 true,2
12,18,21,23,32 23 true,3
21,23,29,33,38 25 false,??

Additionally, an large sequence of values (up to 2147483647 elements),
with a value to find located at the end of it, should be used.

24 / 41



Structural Testing

Structural Testing

The structural testing allows the testers to check each prime path in the
tested component. A path is a sequence of statements performed together.
It starts with an entry point and ends with an exit point. A prime path is
a path that is different from others by at least one statement.
When all prime paths in the component are tested, then it means that each
of the statements in the component has been performed at least once and
each simple condition has been verified when it is true and false. A simple
condition is a part of the condition expression that doesn’t include logical
operator (or, and). The combinations of prime paths are not tested,
because it would be too expensive.
To find all prime paths in the code the Control-Flow Graph (CFG) can be
applied. The CGF for search() method is given in the Figure 8.

25 / 41



Structural Testing

Structural Testing
Control-Flow Graph

1

2

if(elemArray[middle]==key)
3

8

9

if(elemArray[middle]<key)
4

5 6

7

bottom >top while(bottom<=top)

Figure: Control Flow Graph

26 / 41



Structural Testing

Structural Testing

There are 4 prime paths in the CGF for search() method, e.g.:
1, 2, 3, 8, 9
1, 2, 3, 4, 6, 7, 2
1, 2, 3, 4, 5, 7, 2
1, 2, 3, 4, 6, 7, 2, 8, 9
The number of such paths is defined by the Cyclomatic Complexity, by
Thomas J. McCabe Sr. It is calculated the following way:

CC(G) = #edges − #nodes + 2
or it can be calculated by counting all the simple conditions in the code
and adding one to the sum. Both the methods are useless when the code is
multithreaded, or recursive or contains the infamous goto statement. The
cyclomatic complexity specifies the minimum number of test cases needed
to verify the code under tests.

27 / 41



Integration Testing

Integration Testing

The main objective of Integration Testing it to verify the interaction of
cooperating software components. That means that the integration tests
can be performed when at least two such components are available. In-
tegration Testing is an incremental process (see Figure 9). When only
two components are ready for tests, then three sets of test cases can be
prepared: two that verifies the components in isolation (e.g. T1 and T2)
and one that checks how they cooperate (e.g. T3). If more components
are added, then the existing test cases need to be updated and new sets
of them should be included to verify the interaction of new elements with
the rest of the system.

28 / 41



Integration Testing

Integration Testing
Incremental Integration Testing

b

a
t1

t2

t3

Phase 1

c

b

a

t4

t3

t2

t1

Phase 2

d

c

b

a

t5

t4

t3

t2

t1

Phase 3

Figure: Incremental Integration Testing

29 / 41



Integration Testing

Integration Testing

Integration Testing is usually not as straightforward, as shown in the Fig-
ure 9. The newly added test cases may reveal some defects in the interac-
tion of previously integrated components or in the components themselves,
that were not detected by the earlier used test cases.
It may also happen that the integration of just two components is impos-
sible and more of them have to be integrated at once. Such an approach
is called a Big Bang Integration Testing. However, two others approaches
are more common: the Top-Down and the Bottom-Up Integration Testing.
They are strictly related to the methods of constructing the software.
In the Top-Down approach, first are build and tested the high-level compo-
nents. It means that the lower-level ones, on which depend the high-level
ones, are unavailable and have to be replaced in testing by test doubles.
Later, when the missing components are finally available, they use other
test doubles when tested.

30 / 41



Integration Testing

Integration Testing
Top-Down Testing

Testing Order

Level 1

Second level test doubles

Level 1

Level 2 Level 2 Level 2 Level 2

Third level test doubles

Figure: Top-Down Testing

31 / 41



Integration Testing

Integration Testing
Test Doubles

A Test Double is a software component used in testing. It usually pretends
to be another component, which final version is not available at the time
of tests, however the verified software depends on that component. The
double may perform additional tasks during a test, like recording how
many times it was invoked by the tested software. The classification of test
doubles was proposed by Gerard Meszaros, an employee of Microsoft:

dummy A test double that is passed as an argument to a subroutine.
It does nothing.

fake It has some working implementation, but not suitable for
production environment (i.e. an in-memory database).

stub It provides responses, but only to some specified requests.
It doesn’t react to anything else.

spy It is a stub that records some limited information about how
it was invoked in tests.

mock A mock verifies how it is invoked. It may throw exception
is it is called incorrectly. Like the spy it records and verifies
how many times it was called in testing.

32 / 41

https://martinfowler.com/bliki/TestDouble.html


Integration Testing

Integration Testing
Bottom-Up Testing

Testing
O

rder

Test
Driver

Test
Driver

Test
Driver

Level n-1 Level n-1 Level n-1

Level n Level n Level n Level n Level n

Test
Driver

Test
Driver

Test
Driver

Test
Driver

Test
Driver

Figure: Bottom-Up Testing

33 / 41



Integration Testing

Integration Testing

In the Bottom-Up approach the lowest-level components are built and ver-
ified first. However, they are not independent, so a special Test Drivers
must be prepared in order to test them. When the lowest-level components
are finally integrated in highest-level ones, then another set of test drivers
is needed to test them.

34 / 41



Integration Testing

Integration Testing
Comparison of Top-Down And Bottom-Up Methods

In Top-Down approach, the software architecture can be validated
earlier, than in Bottom-Up.
The proof of feasibility can be delivered early in both approaches.
Tests implementation is equally hard in both approaches.
Tests observation requires additional measures in both cases.

In real-life software projects, both methods of developing and testing are
applied simultaneously, so these cons and pros don’t matter that much.

35 / 41



Integration Testing

Integration Testing
Interface Testing

Most test cases in Integration Testing are designed to verify the interfaces
of the components, rather then their internal implementations (see Figure
12). The most common types of interfaces are as follows:

parameters used to pass data or function references from one component
to another,

shared memory it is a memory area used by two or more concurrent threads
or processed to exchange data,

procedural interface one of components provides services called by other
components,

message passing one of the components requests services of other compo-
nent by passing a message.

36 / 41



Integration Testing

Integration Testing
Interface Testing

a b

c

Test
cases

Figure: Interface Testing

37 / 41



Integration Testing

Integration Testing
Interface Testing — Recomentations

Each of the interface types needs a different approach when designing test
cases:

1 For parameters, the boundary testing method may be applied. Spe-
cial care need the reference and pointer parameters. Tests should be
performed with their values equal null.

2 The shared memory should be tested in such a way, that the processes
or threads, that use it, are activated in different order.

3 Some of the test cases that verify the procedural interface should make
the component equipped with it fail. This allows testers to check if the
programmers haven’t made wrong assumptions about how the failure
is announced.

4 Stress Testing should be applied to verify the message passing inter-
face.

38 / 41



System Testing

System Testing

System testing takes place when the development of at least an early ver-
sion of the software is finished. Some experts consider it to be a natural
extension of integration testing, but tests at this level have a different
character. They not only check the functionality of the software, but also
verify if it meets its non-functional requirements:
functional tests check if the software correctly provides its services,
efficiency tests examine how the software is working under a regular work-

load,
stress tests verify the behaviour of the software for significantly higher

workload than it was designed for,
security tests check if the software appropriately protects its assets,
compliance tests verify if the software meets required standards,
portability tests check if the software runs correctly on different system or

hardware platforms,
reliability tests verifies if the software works reliably.

39 / 41



Ending

Questions

?

40 / 41



Ending

The End

Thank You for Your attention!

41 / 41


	Motto
	Introduction
	Functional Testing
	Structural Testing
	Integration Testing
	System Testing
	Ending

