
Software Engineering — Software Architecture

Arkadiusz Chrobot

Deparment of Information Systems, Kielce University of Technology

Kielce, October 26, 2024

1 / 43



Outline

1 Motto

2 Introduction

3 Software structure
Repository Model
Client — Server Model
Abstract Machine Model

4 Control Models
Centralized Control
The Manager Mode
Event-Driven Control

5 Modular Decomposition

6 Dedicated Architectures

2 / 43



Motto

Motto

”A doctor can bury his mistakes but an architect can only advise his clients
to plant vines.”
Frank Lloyd Wright

3 / 43



Introduction

Software Architecture

There is no agreement among experts on what the software architecture
actually is. Here are some definitions:

Definition (Software Architecture by Martin Fowler)
The Software Architecture is the shared understanding that expert devel-
opers have of the system design.
https://martinfowler.com/architecture/

Definition (Software Architecture by Len Bass, et al.)
The Software Architecture of a system is the set of structures needed
to reason about the system, which comprise software elements, relations
among them, and properties of both.
Software Architecture in Practice

4 / 43

https://martinfowler.com/architecture/


Introduction

Software Architecture

Definition (Software Architecture by Robert C. Martin)
The architecture of a software system is the shape given it by those who
build it.
Clean Architecture

Definition (Software Architecture by Software Engineering Institute)
The software architecture of a system represents the design decisions re-
lated to overall system structure and behavior.
https://www.sei.cmu.edu/our-work/software-architecture/

5 / 43

https://www.sei.cmu.edu/our-work/software-architecture/


Introduction

Software Architecture Designing

Definition (Software Architecture Designing)
Designing of the Software Architecture is an early activity in software
designing, when the subsystems, the control flow and the communications
schemas are defined.

6 / 43



Introduction

Software Architecture Designing

Explicit designing and documenting of the software architecture has the
following advantages:
Communication with stakeholders: the architecture describes high-level fea-

tures of the software design, and thus it may serve as an
entry point for discussion with different stakeholders.

Features Analysis: the architecture allows the developers to early analyze
the software structure and verify if it meets the nonfunc-
tional requirements.

Reusing: the architecture is relatively universal and can be a basis for
an entire line of software products.

7 / 43



Introduction

Software Architecture Designing

Explicit designing and documenting of the software architecture has the
following advantages:
Communication with stakeholders: the architecture describes high-level fea-

tures of the software design, and thus it may serve as an
entry point for discussion with different stakeholders.

Features Analysis: the architecture allows the developers to early analyze
the software structure and verify if it meets the nonfunc-
tional requirements.

Reusing: the architecture is relatively universal and can be a basis for
an entire line of software products.

7 / 43



Introduction

Software Architecture Designing

Explicit designing and documenting of the software architecture has the
following advantages:
Communication with stakeholders: the architecture describes high-level fea-

tures of the software design, and thus it may serve as an
entry point for discussion with different stakeholders.

Features Analysis: the architecture allows the developers to early analyze
the software structure and verify if it meets the nonfunc-
tional requirements.

Reusing: the architecture is relatively universal and can be a basis for
an entire line of software products.

7 / 43



Introduction

Software Architecture Designing

The following activities can be identified in the software architecture de-
signing process:
Defining the overall structure: the software system is divided into subsys-

tems and the communication schemas between them are es-
tablished.

Control modelling: the model of control flow in the software system is
defined.

Modularization: each subsystem is divided into modules.

8 / 43



Introduction

Software Architecture Designing

The following activities can be identified in the software architecture de-
signing process:
Defining the overall structure: the software system is divided into subsys-

tems and the communication schemas between them are es-
tablished.

Control modelling: the model of control flow in the software system is
defined.

Modularization: each subsystem is divided into modules.

8 / 43



Introduction

Software Architecture Designing

The following activities can be identified in the software architecture de-
signing process:
Defining the overall structure: the software system is divided into subsys-

tems and the communication schemas between them are es-
tablished.

Control modelling: the model of control flow in the software system is
defined.

Modularization: each subsystem is divided into modules.

8 / 43



Introduction

Subsystems and Modules

Definition (Subsystem)
A subsystem is a part of a software system that provides services inde-
pendently on other subsystems. The subsystem consists of modules and
has an interface that allows it to communicate with other subsystems. A
single subsystem can be considered as a standalone system.

Definition (Module)
A Module is a system component offering at least one service. It uses ser-
vices of other modules, and cannot be considered as a standalone system.
A single model usually consists of other modules.

9 / 43



Introduction

Software Architecture Documentation

The software architecture documentation can describe (graphically or tex-
tually) the following models of software:
The structural static model shows the software components that can be

developed as independent units.

The dynamical model of the process shows how the software is dividend
into runtime processes.

The interfaces model defines what services are provided by each subsys-
tem by its public interface.

The dependencies model defines dependencies such as the data flow be-
tween the subsystems.

The most important form of the architecture documentation is the code.
The architecture has to be mapped to the code.

10 / 43



Introduction

Software Architecture Documentation

The software architecture documentation can describe (graphically or tex-
tually) the following models of software:
The structural static model shows the software components that can be

developed as independent units.
The dynamical model of the process shows how the software is dividend

into runtime processes.

The interfaces model defines what services are provided by each subsys-
tem by its public interface.

The dependencies model defines dependencies such as the data flow be-
tween the subsystems.

The most important form of the architecture documentation is the code.
The architecture has to be mapped to the code.

10 / 43



Introduction

Software Architecture Documentation

The software architecture documentation can describe (graphically or tex-
tually) the following models of software:
The structural static model shows the software components that can be

developed as independent units.
The dynamical model of the process shows how the software is dividend

into runtime processes.
The interfaces model defines what services are provided by each subsys-

tem by its public interface.

The dependencies model defines dependencies such as the data flow be-
tween the subsystems.

The most important form of the architecture documentation is the code.
The architecture has to be mapped to the code.

10 / 43



Introduction

Software Architecture Documentation

The software architecture documentation can describe (graphically or tex-
tually) the following models of software:
The structural static model shows the software components that can be

developed as independent units.
The dynamical model of the process shows how the software is dividend

into runtime processes.
The interfaces model defines what services are provided by each subsys-

tem by its public interface.
The dependencies model defines dependencies such as the data flow be-

tween the subsystems.
The most important form of the architecture documentation is the code.
The architecture has to be mapped to the code.

10 / 43



Introduction

Dependencies

The architecture has the greatest impact on the ability of the software to
fulfill the nonfunctional requirements:
Effectiveness: A small number of coarse-grained, rarely communicating

components should be used for performing the critical oper-
ations.

Security: A layered structure should be used, with the most critical
assets placed in the most inner layers, with the high-level of
verification.

Safety: The safety-specific operations should be enclosed in one or
small number of subsystems.

Availability: Redundant components should be used.
Maintenance: A large number of fine-grained, independent, easy to replace

components should be used.

11 / 43



Introduction

Dependencies

The architecture has the greatest impact on the ability of the software to
fulfill the nonfunctional requirements:
Effectiveness: A small number of coarse-grained, rarely communicating

components should be used for performing the critical oper-
ations.

Security: A layered structure should be used, with the most critical
assets placed in the most inner layers, with the high-level of
verification.

Safety: The safety-specific operations should be enclosed in one or
small number of subsystems.

Availability: Redundant components should be used.
Maintenance: A large number of fine-grained, independent, easy to replace

components should be used.

11 / 43



Introduction

Dependencies

The architecture has the greatest impact on the ability of the software to
fulfill the nonfunctional requirements:
Effectiveness: A small number of coarse-grained, rarely communicating

components should be used for performing the critical oper-
ations.

Security: A layered structure should be used, with the most critical
assets placed in the most inner layers, with the high-level of
verification.

Safety: The safety-specific operations should be enclosed in one or
small number of subsystems.

Availability: Redundant components should be used.
Maintenance: A large number of fine-grained, independent, easy to replace

components should be used.

11 / 43



Introduction

Dependencies

The architecture has the greatest impact on the ability of the software to
fulfill the nonfunctional requirements:
Effectiveness: A small number of coarse-grained, rarely communicating

components should be used for performing the critical oper-
ations.

Security: A layered structure should be used, with the most critical
assets placed in the most inner layers, with the high-level of
verification.

Safety: The safety-specific operations should be enclosed in one or
small number of subsystems.

Availability: Redundant components should be used.

Maintenance: A large number of fine-grained, independent, easy to replace
components should be used.

11 / 43



Introduction

Dependencies

The architecture has the greatest impact on the ability of the software to
fulfill the nonfunctional requirements:
Effectiveness: A small number of coarse-grained, rarely communicating

components should be used for performing the critical oper-
ations.

Security: A layered structure should be used, with the most critical
assets placed in the most inner layers, with the high-level of
verification.

Safety: The safety-specific operations should be enclosed in one or
small number of subsystems.

Availability: Redundant components should be used.
Maintenance: A large number of fine-grained, independent, easy to replace

components should be used.

11 / 43



Software structure

Block Diagram Example — Robot Control System

Vision
System

Item
Identification

System
Arm

Controller
Gripper

Controller

Package
Selection
System

Packaging
System

Conveyor
Belt

Controller

12 / 43



Software structure

Instability Metric

Robert C. Martin proposed, in his book about the Clean Architecture, an
Instability Metric that allows the programmer to estimate how likely is a
given component to be changed in the future. To determine the value of
such a metric, it is necessary to know the number of fan-in and fan-out
(incoming and outgoing) dependencies. The formula for the metric is as
follows:

I = Fan-in
Fan-in + Fan-out

(1)

The closer the result is to 1, the more the component is unstable, and
the closer is the outcome to 0 the more independent and responsible the
component is. For example, the Vision System from the previous slide
is maximally independent and responsible (I = 0) and the Conveyor Belt
Controller is maximally unstable (I = 1). The architecture cannot be built
from independent and responsible components only, because it could be
too rigid. On the other hand, an architecture consisting of only unstable
components would be also unstable. There has to be balance between the
number of unstable and independent components.

13 / 43



Software structure Repository Model

Repository Model

A central database is the main component of most of systems that process
significant amounts of data. This kind of architecture is called a Repository
Model. It is specific for systems where data are generated by one of the
subsystems and used (processed) by the other.

14 / 43



Software structure Repository Model

Repository Model — Example

Design
Translator

Project
Repository

Program
Editor

Program
Editor

Design
Editor

Code
Generator

Design
Analyzer

Report
Generator

15 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.

- A common repository data model is needed, that has to be respected by all
subsystems.

+ Subsystems that produce data don’t have to be concerned with how the
other subsystems consume these data.

- The enforced data model may make the evolution of the software difficult.
+ Making backups, managing the security and other operations are central-

ized.
- The repository model enforces the same backup, security, etc. strategy for

all subsystems.
+ The data are shared through the repository, so integrating new tools (sub-

systems) is easy, providing that they respect the common data model.
- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.
- A common repository data model is needed, that has to be respected by all

subsystems.

+ Subsystems that produce data don’t have to be concerned with how the
other subsystems consume these data.

- The enforced data model may make the evolution of the software difficult.
+ Making backups, managing the security and other operations are central-

ized.
- The repository model enforces the same backup, security, etc. strategy for

all subsystems.
+ The data are shared through the repository, so integrating new tools (sub-

systems) is easy, providing that they respect the common data model.
- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.
- A common repository data model is needed, that has to be respected by all

subsystems.
+ Subsystems that produce data don’t have to be concerned with how the

other subsystems consume these data.

- The enforced data model may make the evolution of the software difficult.
+ Making backups, managing the security and other operations are central-

ized.
- The repository model enforces the same backup, security, etc. strategy for

all subsystems.
+ The data are shared through the repository, so integrating new tools (sub-

systems) is easy, providing that they respect the common data model.
- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.
- A common repository data model is needed, that has to be respected by all

subsystems.
+ Subsystems that produce data don’t have to be concerned with how the

other subsystems consume these data.
- The enforced data model may make the evolution of the software difficult.

+ Making backups, managing the security and other operations are central-
ized.

- The repository model enforces the same backup, security, etc. strategy for
all subsystems.

+ The data are shared through the repository, so integrating new tools (sub-
systems) is easy, providing that they respect the common data model.

- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.
- A common repository data model is needed, that has to be respected by all

subsystems.
+ Subsystems that produce data don’t have to be concerned with how the

other subsystems consume these data.
- The enforced data model may make the evolution of the software difficult.

+ Making backups, managing the security and other operations are central-
ized.

- The repository model enforces the same backup, security, etc. strategy for
all subsystems.

+ The data are shared through the repository, so integrating new tools (sub-
systems) is easy, providing that they respect the common data model.

- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.
- A common repository data model is needed, that has to be respected by all

subsystems.
+ Subsystems that produce data don’t have to be concerned with how the

other subsystems consume these data.
- The enforced data model may make the evolution of the software difficult.

+ Making backups, managing the security and other operations are central-
ized.

- The repository model enforces the same backup, security, etc. strategy for
all subsystems.

+ The data are shared through the repository, so integrating new tools (sub-
systems) is easy, providing that they respect the common data model.

- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.
- A common repository data model is needed, that has to be respected by all

subsystems.
+ Subsystems that produce data don’t have to be concerned with how the

other subsystems consume these data.
- The enforced data model may make the evolution of the software difficult.

+ Making backups, managing the security and other operations are central-
ized.

- The repository model enforces the same backup, security, etc. strategy for
all subsystems.

+ The data are shared through the repository, so integrating new tools (sub-
systems) is easy, providing that they respect the common data model.

- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Repository Model

Pros And Cons

+ Efficiently stores huge amount of data.
- A common repository data model is needed, that has to be respected by all

subsystems.
+ Subsystems that produce data don’t have to be concerned with how the

other subsystems consume these data.
- The enforced data model may make the evolution of the software difficult.

+ Making backups, managing the security and other operations are central-
ized.

- The repository model enforces the same backup, security, etc. strategy for
all subsystems.

+ The data are shared through the repository, so integrating new tools (sub-
systems) is easy, providing that they respect the common data model.

- Making a distributed version of the central repository can be difficult.

16 / 43



Software structure Client — Server Model

Client — Server Model

Main components of the client — server model:
a collection of independent servers that provide services to other sub-
systems,

a collection of clients that utilize services provided by servers,
a network that enables the communication between clients and servers,
it’s not always necessary.

17 / 43



Software structure Client — Server Model

Client — Server Model

Main components of the client — server model:
a collection of independent servers that provide services to other sub-
systems,
a collection of clients that utilize services provided by servers,

a network that enables the communication between clients and servers,
it’s not always necessary.

17 / 43



Software structure Client — Server Model

Client — Server Model

Main components of the client — server model:
a collection of independent servers that provide services to other sub-
systems,
a collection of clients that utilize services provided by servers,
a network that enables the communication between clients and servers,
it’s not always necessary.

17 / 43



Software structure Client — Server Model

Example of Client — Server Model

Client no. 1 Client no. 2 Client no. 3 Client no. 4

Broadband Network

Directory
Server

Movie
Server

Photo
Server

Hypertext
Server

Directory Movie
Files

Digital
Photos

Hypertext
Network

18 / 43



Software structure Client — Server Model

Pros And Cons

+ The client — server model is a distributed architecture.

- There is no common data model.

19 / 43



Software structure Client — Server Model

Pros And Cons

+ The client — server model is a distributed architecture.
- There is no common data model.

19 / 43



Software structure Abstract Machine Model

Abstract Machine Model

The Abstract Machine Model (the Layered Model) defines the subsystems
relationships (dependencies). The system is organized as a stack of layers
offering some services. Each layer is a virtual (abstract) machine, with its
own machine language (a set of services), that is used to implement the
next level of the abstract machine.

20 / 43



Software structure Abstract Machine Model

Abstract Machine Model — Example

Version Control System

Object Control System

Database Management System

Operating
System

21 / 43



Software structure Abstract Machine Model

Pros And Cons

+ The layered model facilitates incremental software development.

+ The layered architecture is easy to modify and port.
- The layered model is difficult to use.
- Systems based on a ”pure” layered architecture can be inefficient.

22 / 43



Software structure Abstract Machine Model

Pros And Cons

+ The layered model facilitates incremental software development.
+ The layered architecture is easy to modify and port.

- The layered model is difficult to use.
- Systems based on a ”pure” layered architecture can be inefficient.

22 / 43



Software structure Abstract Machine Model

Pros And Cons

+ The layered model facilitates incremental software development.
+ The layered architecture is easy to modify and port.
- The layered model is difficult to use.

- Systems based on a ”pure” layered architecture can be inefficient.

22 / 43



Software structure Abstract Machine Model

Pros And Cons

+ The layered model facilitates incremental software development.
+ The layered architecture is easy to modify and port.
- The layered model is difficult to use.
- Systems based on a ”pure” layered architecture can be inefficient.

22 / 43



Control Models

Control Models

To act as a single system all the subsystems has to be controlled in such
a way that they should provide services where and when it is necessary.
There are two main approaches to control:
Centralized control: one of the subsystems is responsible for the control.

Event-driven control: the control is not built-in in the system, each of the
system can react to an external event.

23 / 43



Control Models

Control Models

To act as a single system all the subsystems has to be controlled in such
a way that they should provide services where and when it is necessary.
There are two main approaches to control:
Centralized control: one of the subsystems is responsible for the control.
Event-driven control: the control is not built-in in the system, each of the

system can react to an external event.

23 / 43



Control Models Centralized Control

Centralized Control

There are two types of architectures with centralized control, depending
on whether the subsystems work concurrently or sequentially:
The Call — Return Model: used only in sequential systems.

The Manager Model: may be applied in both sequential and concurrent
systems. One of the components is chosen to be a system
manager that manages other processes. The model is also
called an Event-Loop Model.

24 / 43



Control Models Centralized Control

Centralized Control

There are two types of architectures with centralized control, depending
on whether the subsystems work concurrently or sequentially:
The Call — Return Model: used only in sequential systems.
The Manager Model: may be applied in both sequential and concurrent

systems. One of the components is chosen to be a system
manager that manages other processes. The model is also
called an Event-Loop Model.

24 / 43



Control Models Centralized Control

The Call — Return Model

Main Program

Subroutine 1

Subroutine 1.1 Subroutine 1.2

Subroutine 2 Subroutine 3

Subroutine 3.1 Subroutine 3.2

25 / 43



Control Models Centralized Control

Pros And Cons

+ The system is deterministic and the control flow is easy to analyse.

- Exceptions may be difficult to handle.

26 / 43



Control Models Centralized Control

Pros And Cons

+ The system is deterministic and the control flow is easy to analyse.
- Exceptions may be difficult to handle.

26 / 43



Control Models The Manager Mode

Centralized Management Model of Control

Detector
Processes

Actuator
Processes

System
Driver

Computing
Processes

User
Interface

Emergency
Handling

27 / 43



Control Models Event-Driven Control

Event-Driven Control

There are two basic event-driven control models:
Broadcast Model: the event is broadcast to all subsystems.

Interrupt-Driven Model: the external interrupts are detected by interrupt
handlers and passed to some other components for process-
ing.

28 / 43



Control Models Event-Driven Control

Event-Driven Control

There are two basic event-driven control models:
Broadcast Model: the event is broadcast to all subsystems.
Interrupt-Driven Model: the external interrupts are detected by interrupt

handlers and passed to some other components for process-
ing.

28 / 43



Control Models Event-Driven Control

Broadcast Model

Subsystem
1

Subsystem
2

Subsystem
3

Subsystem
4

Event Handling

29 / 43



Control Models Event-Driven Control

Pros And Cons

+ Easy evolution.

- The event emitter doesn’t get the feedback information whether the
event was handled.

30 / 43



Control Models Event-Driven Control

Pros And Cons

+ Easy evolution.
- The event emitter doesn’t get the feedback information whether the

event was handled.

30 / 43



Control Models Event-Driven Control

Interrupt-Driven Control Model

Interrupts

Interrupt
Vector

Interrupt
Handler

no. 1

Interrupt
Handler

no. 2

Interrupt
Handler

no. 3

Interrupt
Handler

no. 4

Process
no. 1

Process
no. 2

Process
no. 3

Process
no. 4

31 / 43



Control Models Event-Driven Control

Pros And Cons

+ Fast event responses.

- Complexity of programming and difficulties with validation.

32 / 43



Control Models Event-Driven Control

Pros And Cons

+ Fast event responses.
- Complexity of programming and difficulties with validation.

32 / 43



Modular Decomposition

Modular Decomposition

The modular decomposition is a process of decomposing subsystems into
modules. The following models may be used:
The object-oriented model: the (sub)system is decomposed into a collec-

tion of interacting objects.

The data-flow model: the (sub)system is decomposed into functional mod-
ules transforming input data into output data. It is also
called a Pipeline Model.

33 / 43



Modular Decomposition

Modular Decomposition

The modular decomposition is a process of decomposing subsystems into
modules. The following models may be used:
The object-oriented model: the (sub)system is decomposed into a collec-

tion of interacting objects.
The data-flow model: the (sub)system is decomposed into functional mod-

ules transforming input data into output data. It is also
called a Pipeline Model.

33 / 43



Modular Decomposition

The Object-Oriented Model — Example

Client

client no.
surname
address
credit period

Receipt

invoice no.
date
amount
client no.

Invoice

invoice no.
date
amount
client no.

issue()
issueReminder()
acceptPayment()
issueReceipt()

Payment

invoice no.
date
amount
client no.

34 / 43



Modular Decomposition

Pros and Cons

+ Objects are loosely coupled, so their implementation can be modified
without affecting other objects.

+ Objects often represent a real-world entities, making the system easy
to understand.

+ There are many object-oriented languages, that make it easy to di-
rectly implement the object components.

+ The object-oriented model can be applied both in sequential and con-
current systems.

- It is necessary to use names and interfaces of the objects, that provide
services.

- It is difficult to estimate the impact of a single object interface modi-
fication on the other objects.

- It can be difficult to represent complex entities as objects.

35 / 43



Modular Decomposition

Pros and Cons

+ Objects are loosely coupled, so their implementation can be modified
without affecting other objects.

+ Objects often represent a real-world entities, making the system easy
to understand.

+ There are many object-oriented languages, that make it easy to di-
rectly implement the object components.

+ The object-oriented model can be applied both in sequential and con-
current systems.

- It is necessary to use names and interfaces of the objects, that provide
services.

- It is difficult to estimate the impact of a single object interface modi-
fication on the other objects.

- It can be difficult to represent complex entities as objects.

35 / 43



Modular Decomposition

Pros and Cons

+ Objects are loosely coupled, so their implementation can be modified
without affecting other objects.

+ Objects often represent a real-world entities, making the system easy
to understand.

+ There are many object-oriented languages, that make it easy to di-
rectly implement the object components.

+ The object-oriented model can be applied both in sequential and con-
current systems.

- It is necessary to use names and interfaces of the objects, that provide
services.

- It is difficult to estimate the impact of a single object interface modi-
fication on the other objects.

- It can be difficult to represent complex entities as objects.

35 / 43



Modular Decomposition

Pros and Cons

+ Objects are loosely coupled, so their implementation can be modified
without affecting other objects.

+ Objects often represent a real-world entities, making the system easy
to understand.

+ There are many object-oriented languages, that make it easy to di-
rectly implement the object components.

+ The object-oriented model can be applied both in sequential and con-
current systems.

- It is necessary to use names and interfaces of the objects, that provide
services.

- It is difficult to estimate the impact of a single object interface modi-
fication on the other objects.

- It can be difficult to represent complex entities as objects.

35 / 43



Modular Decomposition

Pros and Cons

+ Objects are loosely coupled, so their implementation can be modified
without affecting other objects.

+ Objects often represent a real-world entities, making the system easy
to understand.

+ There are many object-oriented languages, that make it easy to di-
rectly implement the object components.

+ The object-oriented model can be applied both in sequential and con-
current systems.

- It is necessary to use names and interfaces of the objects, that provide
services.

- It is difficult to estimate the impact of a single object interface modi-
fication on the other objects.

- It can be difficult to represent complex entities as objects.

35 / 43



Modular Decomposition

Pros and Cons

+ Objects are loosely coupled, so their implementation can be modified
without affecting other objects.

+ Objects often represent a real-world entities, making the system easy
to understand.

+ There are many object-oriented languages, that make it easy to di-
rectly implement the object components.

+ The object-oriented model can be applied both in sequential and con-
current systems.

- It is necessary to use names and interfaces of the objects, that provide
services.

- It is difficult to estimate the impact of a single object interface modi-
fication on the other objects.

- It can be difficult to represent complex entities as objects.

35 / 43



Modular Decomposition

Pros and Cons

+ Objects are loosely coupled, so their implementation can be modified
without affecting other objects.

+ Objects often represent a real-world entities, making the system easy
to understand.

+ There are many object-oriented languages, that make it easy to di-
rectly implement the object components.

+ The object-oriented model can be applied both in sequential and con-
current systems.

- It is necessary to use names and interfaces of the objects, that provide
services.

- It is difficult to estimate the impact of a single object interface modi-
fication on the other objects.

- It can be difficult to represent complex entities as objects.

35 / 43



Modular Decomposition

Data-Flow Model — Example

Invoice Payments

Read
issued

invoices

Identify
payments

Find
outdated
invoices

Issue
an invoice

Receipts

Issue
reminders Reminders

36 / 43



Modular Decomposition

Pros and Cons

+ The pipeline architecture facilitates the reuse of functional modules.

+ It is intuitively understood for many people.
+ The evolution of the system involves adding new transformations

(modules) and it is very easy.
+ It is easy to implement in both sequential and concurrent systems.
- A common data format is necessary for all transformations.
- It cannot be applied for building interactive systems.

37 / 43



Modular Decomposition

Pros and Cons

+ The pipeline architecture facilitates the reuse of functional modules.
+ It is intuitively understood for many people.

+ The evolution of the system involves adding new transformations
(modules) and it is very easy.

+ It is easy to implement in both sequential and concurrent systems.
- A common data format is necessary for all transformations.
- It cannot be applied for building interactive systems.

37 / 43



Modular Decomposition

Pros and Cons

+ The pipeline architecture facilitates the reuse of functional modules.
+ It is intuitively understood for many people.
+ The evolution of the system involves adding new transformations

(modules) and it is very easy.

+ It is easy to implement in both sequential and concurrent systems.
- A common data format is necessary for all transformations.
- It cannot be applied for building interactive systems.

37 / 43



Modular Decomposition

Pros and Cons

+ The pipeline architecture facilitates the reuse of functional modules.
+ It is intuitively understood for many people.
+ The evolution of the system involves adding new transformations

(modules) and it is very easy.
+ It is easy to implement in both sequential and concurrent systems.

- A common data format is necessary for all transformations.
- It cannot be applied for building interactive systems.

37 / 43



Modular Decomposition

Pros and Cons

+ The pipeline architecture facilitates the reuse of functional modules.
+ It is intuitively understood for many people.
+ The evolution of the system involves adding new transformations

(modules) and it is very easy.
+ It is easy to implement in both sequential and concurrent systems.
- A common data format is necessary for all transformations.

- It cannot be applied for building interactive systems.

37 / 43



Modular Decomposition

Pros and Cons

+ The pipeline architecture facilitates the reuse of functional modules.
+ It is intuitively understood for many people.
+ The evolution of the system involves adding new transformations

(modules) and it is very easy.
+ It is easy to implement in both sequential and concurrent systems.
- A common data format is necessary for all transformations.
- It cannot be applied for building interactive systems.

37 / 43



Dedicated Architectures

Domain-Specific Architectures

There are some software architectures common for certain domains. Their
instances differ in details, but the generic structure can be used to build
new systems. These architectures can be classified as follows:
Generic Models: are built using the bottom-top method and describe the

common features of real-world systems.

Reference Models: are built using the top-bottom method and are more
abstract than the generic models. They introduce a com-
mon vocabulary for discussing the design of systems from a
specific domain.

38 / 43



Dedicated Architectures

Domain-Specific Architectures

There are some software architectures common for certain domains. Their
instances differ in details, but the generic structure can be used to build
new systems. These architectures can be classified as follows:
Generic Models: are built using the bottom-top method and describe the

common features of real-world systems.
Reference Models: are built using the top-bottom method and are more

abstract than the generic models. They introduce a com-
mon vocabulary for discussing the design of systems from a
specific domain.

38 / 43



Dedicated Architectures

Compiler Generic Model — Data-Flow And Centralized
Repository

Symbol
table

Lexical
analysis

Syntax
analysis

Semantic
analysis

Code
generation

39 / 43



Dedicated Architectures

IDE Generic Model — Centralized Repository

Lexical
analyser

Syntax
analyser

Semantic
analyser

Pretty-
Printer Optimizer

Editor
Code

generator

Abstract
Syntax Tree

Grammar
Definition

Symbol
table

Output
Definition

Repository

40 / 43



Dedicated Architectures

Reference Model — Example

1

2

3

4

5

6

7

Physical Physical Physical

Data link Data link Data link

Network Network Network

Transport Transport

Session Session

Presentation Presentation

Application Application

Communication Medium

41 / 43



Ending

Questions

?

42 / 43



Ending

The End

Thank You for Your attention!

43 / 43


	Motto
	Introduction
	Software structure
	Repository Model
	Client — Server Model
	Abstract Machine Model

	Control Models
	Centralized Control
	The Manager Mode
	Event-Driven Control

	Modular Decomposition
	Dedicated Architectures
	Ending

