
Software Engineering — Dynamic Testing, Part
Two

Arkadiusz Chrobot

Department of Information Systems, Kielce University of Technology

Kielce, January 26, 2026

1 / 29

Outline

1 Introduction

2 Testing Object-Oriented Code

3 Metrics
Code Coverage Metrics
Requirements Coverage Metrics
Miscellaneous Metrics

2 / 29

Motto

Motto

”Debugging is twice as hard as writing the code in the first place. There-
fore, if you write the code as cleverly as possible, you are, by definition,
not smart enough to debug it.”

— Brian W. Kernighan

”Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.”

— Martin Golding

”To tell somebody that he is wrong is called criticism. To do so officially
is called testing.”

— Gaurav Khurana

3 / 29

Introduction

Introduction

The testing levels, described in the previous lecture, were devised in times
when the procedural-oriented programming was the predominant way of
creating software. For object-oriented programming, they need to be
slightly adjusted, which is the first topic of this lecture. We also dis-
cuss the metrics used in testing. They are used for assessing the progress
and quality of tests, but also the quality of the software under testing.

4 / 29

Testing Object-Oriented Code

Testing Object-Oriented Code

Object-oriented code is different from procedural-oriented code in several
aspects:

An object, as an independent software component, is usually bigger
than a single subroutine.
Objects integrated into subsystems are typically loosely coupled, they
don’t have a common ”entry point”.
If the objects are reused, then testers may not have access to the
source code of objects’ classes, and they cannot analyse it.

5 / 29

Testing Object-Oriented Code

Testing Object-Oriented Code
Testing Levels

In object-oriented code testing the levels of tests may be defined as follows:

unit testing The methods of objects should be tested in isolation, if fea-
sible. The functional and structural methods can be applied
for that.

class testing It is an over-level of unit testing. The sequences of interde-
pendent object operations should be verified. Both testing
methods may be applied.

integration testing The clusters of objects that are used together should
be tested. The tests should be based on usage scenarios.

system testing The way of testing object-oriented software at this level is
the same as described in previous lecture.

acceptance testing At this level, there are also no changes.
It should be noted, that the boundary between unit testing and integration
testing in case of object-oriented software is fuzzy.

6 / 29

Testing Object-Oriented Code

Testing Object-Oriented Code
Class Testing

The Class Testing has three objectives:
1 Examination of methods of the object in isolation — this is the basic

requirement of unit testing. To ensure the isolation the test dummies
are used in unit tests.

2 Verification of setting and accessing all attributes of the object —
necessary only in some cases.

3 Checking the object in all possible states — all events that result in
changing the object state should be tested.

7 / 29

Testing Object-Oriented Code

Testing Object-Oriented Code
Class Testing

Let’s assume, that a class, that implements the following interface, has to
be tested.
interface LightControl {

void switchOn();
void makeBrighter();
void makeDimmer();
void switchOff();

}

8 / 29

Testing Object-Oriented Code

Testing Object-Oriented Code
Class Testing

To verify the class’s object in all possible states, the following sequences
of method invocations have to be verified:
switchOn() Ï switchOff()
switchOn() Ï makeBrighter() Ï switchOff()
switchOn() Ï makeDimmer() Ï switchOff()
switchOn() Ï makeBrighter() Ï makeDimmer() Ï switchOff()
switchOn() Ï makeDimmer() Ï makeBrighter() Ï switchOff()

9 / 29

Testing Object-Oriented Code

Testing Object-Oriented Code
Integration Testing

The integration testing of object-oriented code can be performed using the
following approaches:
Use cases or scenarios testing The use cases or scenarios describe how the

software should be used, so the test cases can be derived
from these descriptions.

Thread testing The object-oriented software is usually event-driven. In
this method, the reactions of software to events are verified.
The tester needs to know how the events are internally pro-
cessed by the software to test it correctly.

Objects interaction testing This is a similar method to thread testing,
however, this time, the test cases should verify the method
— message paths that start with an input event and end
with an output event.

10 / 29

Metrics

Metrics

Dynamic testing is a resource consuming activity. To assess its progress
and quality, special metrics were developed. Some of them are also used
for measuring the quality of tested software. Metrics are also designed
specifically for a given testing method or level.

11 / 29

Metrics Code Coverage Metrics

Code Coverage Metrics

The Code Coverage Metrics inform what proportion of the tested code
is run when the test cases are preformed. The usual recommendation is
to execute about 80% of the code while testing. However, this figure is
ambiguous. Code coverage should be specified in context. For critical
software it may be even higher, while in non-critical systems could be less.
The Code Coverage Metrics allow testers to find redundant test cases, i.e.
such that do not detect new defects. There are three such metrics:

Block Coverage Metric,
Decision Coverage Metric,
Path Coverage Metric.

12 / 29

Metrics Code Coverage Metrics

Code Coverage Metrics
Block Coverage Metric

The block of code is a sequence of statements that don’t contain any state-
ments that change the flow of control (like loops). The Block Coverage
Metric is defined as the ratio of the number of tested blocks of code to
the total number of blocks in the verified component. The Line Coverage
Metric is a special case of the Block Coverage Metric, where the blocks are
one line long. These metrics are easy to understand and may be applied
both to source and executable code. However, they don’t make it possible
to verify how well the conditional expressions in control flow statements
are tested.

13 / 29

Metrics Code Coverage Metrics

Code Coverage Metrics
Block Coverage Metric — Example

if(a==3) {
function_1(...);

} else {
function_2(...);

}

This code snippet requires two test
cases to get the 100% code coverage
— one for each branch of the condi-
tional statement.

14 / 29

Metrics Code Coverage Metrics

Code Coverage Metrics
Block Coverage Metric — Example

int a=-2;
if(b>0)

a=1;
double x=sqrt(a);

This code snippet requires only one
test cases to get the 100% code cov-
erage — for b greater than 0. How-
ever, this test case won’t detect a se-
rious defect that manifests only when
b ≤ 0.

15 / 29

Metrics Code Coverage Metrics

Code Coverage Metrics
Decision Coverage Metric

This Decision Coverage Metric allows testers to verify how well the control
flow statements have been checked. It is defined as the ratio of number of
tested branches of control flow statements to the total number of branches
of control flow statements. The metric offers as good verification of code
blocks as the Block Coverage Metric, and better verification of conditional
expressions in control flow statements. However, it requires designing a
larger number of test cases, and it doesn’t take into consideration the
short-circuit evaluation of expressions.

16 / 29

Metrics Code Coverage Metrics

Code Coverage Metrics
Decision Coverage Metric — Example

if(a>0&&(b<0 || function(a,3)>0)) {
statement_1;

} else {
statement_2;

}

According to the Decision
Coverage Metric, the code
snippet can be fully tested
with the use of only two test
cases. Unfortunately, they
don’t have to invoke the func-
tion in the condition.

17 / 29

Metrics Code Coverage Metrics

Code Coverage Metrics
Path Coverage Metric

The Path Coverage Metric is closely related to prime paths, discussed in
the previous lecture. It takes into account the short-circuit evaluation of
conditional expressions, but requires designing even larger number of test
cases than the Decision Coverage Metric. If the tested software has many
loops, then the test cases should be defined in such a way, that only a
limited number of their iterations should be performed.

18 / 29

Metrics Requirements Coverage Metrics

Requirements Coverage Metrics

The Requirements Coverage Metrics apply to the functional testing method,
and are used in system and acceptance testing. Their objective is to check
how well the software requirements have been verified in the tests. Ba-
sically, these metrics measure the ratio of the number of tested require-
ments to the number of all requirements. However, the requirements may
be described differently, depending of the applied method of requirements
elicitation. Some of them may require more than one test case to be veri-
fied properly.

19 / 29

Metrics Requirements Coverage Metrics

Requirement Coverage Metrics
Error Coverage Metric

The Error Coverage Metric is defined as the number of errors handled by
the software during testing to the total number of errors that the software
is supposed to react to. The errors in this context mean exceptions like
a wrong data format or unavailability a of network connection or other
resources.

20 / 29

Metrics Requirements Coverage Metrics

Requirement Coverage Metrics
Use Cases Coverage Metrics

The use case is a collection of scenarios that describe typical interaction
with the software. There are two categories of use cases: business use cases
that are related to the high-level requirements and system use cases, that
specify the technical details of processes inside the software. Metrics can
be defined for both of them.

21 / 29

Metrics Miscellaneous Metrics

Miscellaneous Metrics

In this section are introduced metrics that don’t fall into any of the pre-
vious categories. They may be used for simultaneously assessing the code
and tests quality.

22 / 29

Metrics Miscellaneous Metrics

Miscellaneous Metrics
Number of Detected Defects

The Number of Detected Defects Metric or the Cumulated Number of De-
tected Defects Metric allows testers to estimate the initial quality of code
and its increment after subsequent sessions of testing and debugging. Us-
ing it, the quality control engineers may also assess the effectiveness of
testing methods they apply, and the defect removal techniques used by
programmers. The Cumulated Number of Detected Defects Metric re-
quires recording the number of discovered defects in each testing session.
When the Cumulated Number of Detected Defects stabilizes, the testing
of the software may be finished.

23 / 29

Metrics Miscellaneous Metrics

Miscellaneous Metrics
Number of Component Defects

The Number of Component Defects Metric is just the number of discovered
defects in each of the software components. It is used to estimate the
quality of every component. While the metric is easy to calculate, its
interpretation depends on many factors. A component with numerous
defects can be a complex one or may be created by a team of overworked
engineers. It may also happen, that the test cases used for testing this
component are more efficient in finding defects than other. Such test cases
may be used in the maintaining phase of the software life cycle, to detect
regression.

24 / 29

Metrics Miscellaneous Metrics

Miscellaneous Metrics
Density of Defects

The Density of Defects Metric is defined as the number of defects per line
of code or kilo lines (1000 lines) of code. It allows the software engineers
to assess the increment of the software quality in relation to the increment
of its lines of code. Although there is no formal definition of the concept
of line of code, the metric is widely used.

25 / 29

Metrics Miscellaneous Metrics

Miscellaneous Metrics
Percentage of Detected Defects

The Percentage of Detected Defects Metric is used to evaluate the testing
efficiency. It is defined as the ratio of number of detected defects to the
estimated total number of defects. To estimate the latter, some defects
are seeded in the software, i.e. they are artificially introduced to the code.
The total number of defects is estimated with the use of the following
expression: Nt = Ns · nt

ns
, where Ns is the total number of seeded defects,

Nt is the estimated number of true defects, nt is the number of true defects
detected by tests, and ns is the number of seeded defects detected by tests.
The more the types of seeded defects match the types of true defects, the
more reliable is this metric.

26 / 29

Ending

Metrics
Ending

There are many more metrics used in Software Engineering, than these
described in this lecture. However, using the metrics discussed here usually
should be enough for estimating the quality of software and tests.

27 / 29

Ending

Questions

?

28 / 29

Ending

The End

Thank You for Your attention!

29 / 29

	Motto
	Introduction
	Testing Object-Oriented Code
	Metrics
	Code Coverage Metrics
	Requirements Coverage Metrics
	Miscellaneous Metrics

	Ending

