
Software Engineering 1
Validation And Verification

Arkadiusz Chrobot

Department of Information Systems, Kielce University of Technology

Kielce, January 11, 2026

1 / 25

Outline

Introduction

Introduction to Dynamic Testing

Static Testing

Static Code Analysis

2 / 25

Motto

”QA Engineer walks into a bar and he orders a beer. Orders 0 beers.
Orders 99999999999 beers. Orders a lizard. Orders −1 beers. Orders a
ueicbksjdhd. First real customer walks in and asks where the bathroom
is. The bar bursts into flames, killing everyone.”
Source: Thomas’ Digital Garden

3 / 25

Introduction

Validation and Verification (V&V) is a software engineering process that
aims to ensure the quality of developed product. The Validation’s objective
is to check if the software meets the clients’ needs. The Verification’s
purpose is to make sure that the software adheres to its specification. The
Validation answers the question [1]:

Is the proper software being built?
While the Verification gives an answer to the question:

Is the software being built properly?

4 / 25

Notes

Notes

Notes

Notes

https://www.2uo.de/Quotations/engineering/


Software Quality

SWEBOK 3.0 defines the Software Quality as the capability of the prod-
uct to satisfy stated and implied needs under specified conditions. It also
describes the quality as the degree to which the software meets the es-
tablished requirements, with the caveat, that these requirements represent
the stakeholders’ needs, wants, and expectations accurately.
The Quality Control (QC) is the process of checking the quality level,
while the Quality Assurance (QA) is a set of all actions aiming to improve
the quality in the software development cycle [2]. These terms are not
interchangeable, so the term used in the motto is (probably) incorrect

5 / 25

Testing

The QA, QC and the V&V are performed with the use of testing. There
are two kinds of testing: static and dynamic.
The static testing is a systematic examination of the software code and
documentation, without running the code [1]. It may be performed man-
ually or with the support of software tools. In the latter case, it is called
static analysis. The most common form of static testing is a review, that
can be either a formal review or an informal review, also known as a peer
review. If the code execution is simulated during the review, then it is
called a desk checking. The most formal types of reviews are the inspec-
tion, performed by the developers, and the audit, performed by a third
party.
The dynamic testing requires an executable code to be available. In this
case the test is an experiment where the software is run for some carefully
chosen data sets and its behaviour is observed, as well its output data are
verified.

6 / 25

Scope of Static And Dynamic Testing

static
testing

requirements architecture
formal

specification design code

prototype dynamic
testing

Figure: The scope of different testing forms

7 / 25

Scope of Static And Dynamic Testing

As the figure 1 implies, the static testing may be applied to almost any
artefact produced in the software development process. It allows the de-
velopers to discover defects earlier than the dynamic testing, which can be
only applied to executable code. However, these two forms of testing are
not mutually exclusive. Moreover, they should be used together. Only
the dynamic testing is able to verify some software attributes, that can be
examined at the runtime.

8 / 25

Notes

Notes

Notes

Notes



Test Planning

As Edsger Dijkstra stated, tests may reveal defects, but they cannot ensure
that there are no defects in the software. That is why testing is one of the
most expensive activity in software development. The initial cost of static
testing is high, but the benefits in later phases of development outweigh
the expenses. On the other hand, the cost of dynamic testing in the early
parts of software projects is almost non-existent (as there is nothing to
test), but it grows rapidly later. One of the most important issues in
testing is planning. In the waterfall model the tests were performed at
the end of the project [3]. This quickly turn out to be wrong, because
the programmers were lacking the feedback information provided by tests
outcomes, to be able to remove defects as soon as possible. One of the
earliest approaches to incorporate testing into the software development
process is the V-Model (figure 2). In this model, with each artefact is
associated a specific level of test.

9 / 25

V-Model

requirements

architecture

design

implementation

acceptance tests

system tests

integration tests

units tests ver
ifi

ca
tio

n

va
lid

at
ion

Figure: The V-Model

10 / 25

Introduction to Dynamic Testing

The main goal of dynamic testing is detecting defects. The defect is a flaw
in the software code that causes an error (also called a failure or fault or
— colloquially — a bug) to occur. The error is an unexpected software
behaviour or outcome. If a test reveals a defect, then its result is positive,
otherwise it is negative.
The objective of dynamic testing may also be examination of the software
runtime attributes, defined by nonfunctional requirements. These include
efficiency, availability, and reliability. These kinds of dynamic tests are
called statistical testing1.
The distinction between statistical testing and testing for defects is fuzzy.
Some defect could be found during statistical testing that were not detected
by other tests. When testing for defects, experienced testers may estimate
the efficiency and other attributes of tested software.

1Please don’t confuse it with static testing. These are two different things.
11 / 25

Finding Defects

Detecting a defect is a different process than finding its actual location
in the code, although they are strictly interconnected. The outcomes of
dynamic tests allow the programmer to analyse the symptoms of a defect.
Locating it in the code is programming language and domain specific. It
requires some experience and usage of such tools as debuggers and sim-
ulators. The figure 3 shows the connection between dynamic testing and
finding and removing a defect.
After the defect is removed, the software should be tested again. The goal
of this phase of testing is to ensure that the defect was really removed
and not just covered up. In theory, all the tests that were performed
until the detection of the defect should be repeated. It would be however
too expensive. A better approach is to use the test case that allowed
testers to detect the defect, and these test cases that relate to the software
components that are affected by the repair. This method of is called
regression testing.

12 / 25

Notes

Notes

Notes

Notes



Finding Defects

test results specification test cases

locate
the defect

design
the repair

remove
the defect test again

Figure: Testing, finding and removing defects

13 / 25

Static Testing
Comparison With Dynamic Testing

+ the total cost of static testing is less than the entire cost of dynamic
testing,

+ in one session of a review, more defects are usually detected than in
one session of dynamic testing,

+ the (possible) defects are not only detected but also located,
+ reviews make it possible to verify additional attributes of code, like

readability, or discover domain-specific issues,
+ aside from the code, other artefacts may be reviewed,
- the reviews cannot verify the runtime attributes of code (i.e. reliabil-

ity, efficiency, and others),
- manual static testing cannot be applied to a large code base.

14 / 25

Inspections

The static testing, in a form of inspections, was proposed in the mid-1970s,
by an IBM employee, Michael Fagan [1]. The inspection team is usually
small (under 10 people). Each member has at least one of the following
roles:

Role Responsibility
Author (Owner) Provides the work product being inspected. Re-

moves the discovered defects.
Inspector Finds defects and other issues.
Reader Interprets the inspected code or document.
Writer Records the meeting outcomes.
Moderator Plans and manages the inspection meeting.
Chief Moderator Sets the inspection standards in the company.

15 / 25

Entry Criteria

Some of the inspection’s entry criteria depend on the type of the inspected
artefact. Others are the same in all possible cases. The Moderator is
responsible for checking if all the entry criteria are met. Particularly, if
the code is inspected she or he has to make sure that:

1. The current and correct specification of the reviewed code is available.
2. The team members know standards of the inspection.
3. The reviewed code development has been finished.
4. The defect types checklist is available.

16 / 25

Notes

Notes

Notes

Notes



Inspection Process

Inspection
Meeting

Preparation
Process

Improvement

Overview Rework

Planning Follow-Up

Figure: The inspection workflow

17 / 25

Static Testing — Detected Defects

Class of Defect Example Control Check
Data Defects Are all variables initialized before using? Do all con-

stants have names? Is a buffer overflow possible?
Control Defects Does every loop terminate? Are the conditions in con-

ditional statements correct?
I/O Defects Can unexpected input data cause a failure?
Interface Defects Is the order of function’s arguments correct? Do the

data types of arguments and parameters match?
Memory Management
Defects

Are the pointers used correctly? Is the allocated mem-
ory released when it is no longer used?

18 / 25

Static Testing — Summary

The reviews are not time-consuming. In case of the inspections the meeting
takes about one hour and the preparations 1–2 hours. In each such a
session, up to 500 lines of code may be analysed. Research shows that
during the review, up to 60% of defects can be found, that would have to
be detected latter, in the (much more expensive) dynamic testing process.
If the static testing is supported by formal methods, then the score of
discovered defects is even higher, up to 90%. Reviews are difficult to
apply in companies with a highly competitive work culture.

19 / 25

Static Code Analysis

The static testing of code can be preformed with the use of Static Code
Analysis Tools. Such tools don’t execute the software, but instead they
examine its source code and find locations of possible defects. They should
be used with caution, because these tools don’t know the context of the
code, and may yield both false positive and false negative results. Usually,
Static Code Analysis Tools are stricter than compilers. They discover the
same classes of defects as the manual review, but also they may check some
additional code properties, like for example its structure and style. Those
tools that are used for verifying the software security are called SAST
(Static Application Security Testing) Tools.

20 / 25

Notes

Notes

Notes

Notes



Examples of SCA Tools

LINT is the first ever developed tool for Static Code Analysis. It is ded-
icated for code written in the C language. Next, some other SCA tools
were developed for other languages. Some of them supported more than
one programming language. The first representative of the SAST tools is
splint. The checkstyle is as an example of Static Code Analysis tool that
checks if the code adheres to coding (including formatting) standards. An-
other free SCA tool is ikos, developed by NASA and dedicated for software
written in C/C++.
Nowadays, the SCA tools are usually used in the CI/CD pipelines, for
checking the code committed by programmers, before adding it to the
repository. Examples of such tools include SonarQube (open source tool),
Coverity (commercial tool by Synopsys), Klocwork (commercial tool by
Perforce). All of them are multilingual and multipurpose.

21 / 25

SCA — Detected Defects

The SCA Tools discover the same classes of defects as manual reviews
do. However, they can also be applied to calculate some code metrics
and to perform the Data Flow Analysis and the Code Path Analysis. The
former traces the dependencies between input and output data. The lat-
ter finds all the code paths in the analysed software and statements that
constitute these paths. The Code Path Analysis is especially useful in a
dynamic testing method called structural testing (also White-Box Testing
or Transparent-Box Testing).

22 / 25

Bibliography

Gerard O’Regan. Concise Guide to Software Testing. Cham, Switzer-
land: Springer, 2019.
Adam Roman. Thinking-Driven Testing: The Most Reasonable Ap-
proach to Quality Control. Cham, Switzerland: Springer International
Publishing AG, 2017.
Neil Walkinshaw. Software Quality Assurance: Consistency in the
Face of Complexity and Change. Cham, Switzerland: Springer Inter-
national Publishing AG, 2017.

23 / 25

Questions

?

24 / 25

Notes

Notes

Notes

Notes



The End

Thank You for Your attention!

25 / 25

Notes

Notes

Notes

Notes


	Motto
	Introduction
	Introduction to Dynamic Testing
	Static Testing
	Static Code Analysis
	Ending
	books

