
Software Engineering — Requirements
Engineering

Arkadiusz Chrobot

Department of Computer Science, Kielce University of Technology

Kielce, October 21, 2024

1 / 27

Outline

Motto

Introduction

Requirements Elicitation And Analysis
User Stories
Scenarios
Ethnography And Prototyping

Requirements Validation

Requirements Management

2 / 27

Motto

”The marketing division of the Sirius Cybernetics Corporation defines a
robot as «Your Plastic Pal Who’s Fun to Be With». The Hitchhiker’s
Guide to the Galaxy defines the marketing division of the Sirius Cybernetic
Corporation as «a bunch of mindless jerks who’ll be the first against the
wall when the revolution comes»…”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

3 / 27

Definitions

Definition (Requrements Engineering)
Requirements Engineering (re) is an early activity in Software Engineer-
ing, concerned with elicitation, analysing, validation and management of
software requirements.

Definition (Requirement)
Requirement is a statement that identifies a product or process operational,
functional, or design characteristic or constraint, which is unambiguous,
testable or measurable, and necessary for product or process acceptability
(by consumer or internal quality assurance guidelines). [1]

Definition (Stakeholder)
Stakeholder is an individual, group of people, organization or other entity
that has a direct or indirect interest (or stake) in the software. [1]

4 / 27

Notes

Notes

Notes

Notes



Sources of Requirements

There are several sources of requirements:
domain is the target area of the software,

regulations can be either internal or external (i.e. enforced by the law),
stakeholders (including software developers) are the main source of re-

quirements.

5 / 27

Requirements Classification
There are many way of classifying requirements. The most basic classifi-
cation is:
Functional Requirements are these requirements, that define what kind of

functions or services the software should provide (in other
words what it should do).

Nonfunctional Requiremntes define constraints for the solution (in other
words they describe how the software should perform its
functions). Nonfunctional requirements directly influence
the software quality.

Functional Requirement
The multimedia system should allow the user to set the brightness of the
screen (scale: 1–100).

Nonfunctional Requirement
The reaction time of Anti-Lock Braking System should be less than 200
ms.

6 / 27

Requirements Classification

Requirements may be classified according to how detailed they are:
Business Requirements are the most important and generic (high-level)

software requirements. Their source is the domain of the
software and they change rarely.

User Requirements define the features and services of the software that
are necessary for its users. They are more detailed than the
business requirements.

System Requirements are the most low-level software requirements. They
specify details necessary for the stakeholders to understand
and approve what the software should provide.

7 / 27

Complexity of Requirements Engineering

The Requirements Engineering is difficult because [2]:
I Stakeholders often don’t know what the software should do.
I Stakeholders may have unrealistic expectations.
I Stakeholders define the requirements in the language of their domain,

which may have some hidden meanings or cannot be immediately
understandable.

I Different stakeholders may have different expectations, resulting in
conflicts of the requirements.

8 / 27

Notes

Notes

Notes

Notes



Overall Requirements Engineering Process

Feasibility
Study

Requirements
Elicitation

and Analysis
Requirements
Specification

Requirements
Validation

Feasibility
Report

System
Model

System and
User

Requirements
Requirements

Documentation

9 / 27

Elicitation And Analysis of Requirements

Domain
Exploration

Requirements
Verification

Requirements
Prioritization

Requirements
Elicitation

Conflict
Resolving

Classification

Requirements
Specification

Requirements
Documentation

The beginning

10 / 27

User Stories

User Stories are the main tool for requirements Elicitation and Analysis
in agile methods. However, this process starts with an Initiative (akin to
the Product Goal), which are further broken down into Epics (big User
Stories) that are then simplified to User Stories. These stories are source
of Tasks that should be performed in order to implement User Stories [3].
Formally, a User Story captures a description of a software feature from an
end-user perspective [4]. However, the User Story is not the whole require-
ment. It is just an entry point for a discussing with the Product Owner
(or similar representative of stakeholders) the details of requirements, and
to specifying the Acceptance Criteria that allow the Developers and/or
Stakeholders to check if the requirement was implemented correctly.
The next slide summarizes the entire description of a single requirement
as defined in agile methods. The User Stories originate from Extreme
Programming, but may be applied in Scrum and other agile approaches.

11 / 27

User Stories

Card Conversation Confirmation

User Stories
are written
down on
cards and
may contain
estimations,
notes etc.

The details
of a User
Story are
discovered
and specified
in a conver-
sation with
the Product
Owner.

Acceptance
Tests verify
the imple-
mentation.

Requirement

12 / 27

Notes

Notes

Notes

Notes



User Story

User Story Structure
As a <specific user, Persona, role>, I want <need>, so that <problem to
solve, goal to achieve>.

User Story Alternative Structure (5W)
As a <who> <when> <where>, I want <what>, so that <why>.

User Story Alternative Structure (BDD)
As a <who> <when> <where>, I want <what>, so that <why>.
Scenario 1: <name of the scenario>
Given <first initial condition>
(And <second initial condition>)
When <scenario trigger>
Then <expected result>

13 / 27

Scenarios

Scenarios are another tool for requirements Elicitation and Analysis in
both traditional and agile software development methods. The scenario
describes a user interaction with the software. Note, that the user is not
necessary a human. It can be an external system or organization. The
scenario hast to meet several conditions:

1. It must specify the state of the system at the beginning of the scenario.
2. It has to describe the normal flow of events in the scenario.
3. It has to identify exceptions and how to handle them.
4. It should contain the information about other activities that may

happen at the same time.
5. It must describe the state of the system after the scenario is finished.

14 / 27

Use Cases

In traditional software development methods the scenarios may be ex-
pressed in a form of UML Use Case Diagrams. An example of such a
diagram is shown in the next slide. The sticky figures are actors. An actor
represents a role that include human users, other software, hardware or
other systems. The ellipses are use cases which define the interaction with
software or the services that the software provides. Each use case is rather
a collection of scenarios than a single scenario. Some of them describe the
alternative ways of preforming the same use case. The use case diagrams
are not enough to describe them so other UML diagrams have to be used
to specify their details, like the sequence diagram presented in the first
after the next slide.

15 / 27

Use Cases

Multimedia System
Multimedia System

User

Premium User

Watch movie

Listen to music

Store data Movies Provider System

16 / 27

Notes

Notes

Notes

Notes



Use Cases

create

wind

Watchmaker

Watch

17 / 27

Ethnography And Prototyping

Prototyping is used both in agile and traditional software development
methods to tackle the analysis of complex and ambiguous requirements.
It involves preparing and delivering to the users a prototype version of
the software that implements only the features that are defined by such
requirements. This allows the developers to get feedback information on
how well the requirements have been recognized.
The prototyping can be combined with the ethnography. In the software
engineering ethnography means observing the work customs of people who
will be the users of the developed software. An analyst who performs the
ethnography may discover patterns of work carried out by future software
users that are not described in formal documents and this can have impact
on how the software prototype should work. Introduction of the prototype
to the work environment of these people can have further consequences
that again may be discovered by the analyst. After several such iterations
a balance should be reached, that allows the developers to finish analysing
the examined requirements. Please note, that the ethnography cannot be
applied to elicitation and analysis of formally defined requirements.

18 / 27

Ethnography And Prototyping

Ethnographic
analysis Meetings Detailed

ethnography

Prototype
validation

System
development

System
Prototyping

19 / 27

Requirements Validation
According to the Chaos Report, issues with requirements are the most
common cause of software projects failures. A mistake in requirements is
more expensive to correct that the bug in the code. It is then crucial to
make sure that the requirements are:
I clearly defined,
I really important,
I complete,
I feasible,
I verifiable.

This is the responsibility of the requirements validation process. There are
several methods that can be used to reach its objective:
I Requirements Reviews,
I Prototyping,
I Acceptance Testing,
I Automated Validation (if Formal Methods are used).

20 / 27

Notes

Notes

Notes

Notes



Requirements Management

As the software project progresses the requirements may, and usually
change. Not all of them alternate at the same rate. These of them that
steam directly from the domain are less likely to change. Others, that
are dependent on external factors, like the law regulations are more frag-
ile. The most important cause of the changes is the knowledge about the
product that the software engineers gather as the time progresses (see next
slide).

21 / 27

Requirements Management

Time

Initial
understanding

of a problem

Deepened
understanding
of a problem

Initial
requirements

Modified
requirements

22 / 27

Requirements Management

To manage the changes in requirements software engineers needs to have
a method of tracking them and a procedure to manage them. Tracking
the changes in requirements is relatively easy in agile methods, with short
iteration time and rich feedback information. In traditional methods it
may involve additional effort. However, in both cases it requires knowing
what is the origin of the requirements, how they are related to each other
and how their change will impact the design of the software.

23 / 27

Requirements Management

Problem analysis

and change

specification

Analysis of the

change and cost

estimation

Implementation

of the change

Identified
problem

Corrected
requirements

24 / 27

Notes

Notes

Notes

Notes



Bibliography

Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requrements Engi-
neering. Cham, Switzerland: Springer, 2017.
Gerard O’Regan. Concise Guide to Software Engineering. Cham,
Switzerland: Springer, 2017.

User stories with examples and a template. 2023. url: https://www.
atlassian.com/agile/project-management/user-stories.

What is User Story? 2023. url: https://www.visual-paradigm.com/
guide/agile-software-development/what-is-user-story/.

25 / 27

Questions

?

26 / 27

The End

Thank You for Your attention!

27 / 27

Notes

Notes

Notes

Notes

https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
https://www.visual-paradigm.com/guide/agile-software-development/what-is-user-story/
https://www.visual-paradigm.com/guide/agile-software-development/what-is-user-story/

	Motto
	Introduction
	Requirements Elicitation And Analysis
	User Stories
	Scenarios
	Ethnography And Prototyping

	Requirements Validation
	Requirements Management
	Ending
	Books
	online

