Notes

Software Engineering — Requirements

Engineering

Arkadiusz Chrobot

Department of Computer Science, Kielce University of Technology

Kielce, October 21, 2024

1/27

Outline
Notes

Motto

Introduction

Requirements Elicitation And Analysis
User Stories
Scenarios

Ethnography And Prototyping

Requirements Validation

Requirements Management

2/27

Motto Notes

"The marketing division of the Sirius Cybernetics Corporation defines a
robot as «Your Plastic Pal Who’s Fun to Be With». The Hitchhiker’s
Guide to the Galaxy defines the marketing division of the Sirius Cybernetic

Corporation as «a bunch of mindless jerks who'll be the first against the
wall when the revolution comes»...”

Douglas Adams, The Hitchhiker’s Guide to the Galazy

3/27

Definitions
Notes

Definition (Requrements Engineering)
Requirements Engineering (RE) is an early activity in Software Engineer-
ing, concerned with elicitation, analysing, validation and management of

software requirements.

Definition (Requirement)

Requirement is a statement that identifies a product or process operational,
functional, or design characteristic or constraint, which is unambiguous,

testable or measurable, and necessary for product or process acceptability
(by consumer or internal quality assurance guidelines). [1]

Definition (Stakeholder)

Stakeholder is an individual, group of people, organization or other entity

that has a direct or indirect interest (or stake) in the software. [1]

a/27

Sources of Requirements

There are several sources of requirements:
domain is the target area of the software,
regulations can be either internal or external (i.e. enforced by the law),

stakeholders (including software developers) are the main source of re-
quirements.

5/27

Requirements Classification

There are many way of classifying requirements. The most basic classifi-

cation is:

Functional Requirements are these requirements, that define what kind of
functions or services the software should provide (in other
words what it should do).

Nonfunctional Requiremntes define constraints for the solution (in other
words they describe how the software should perform its
functions). Nonfunctional requirements directly influence
the software quality.

Functional Requirement

The multimedia system should allow the user to set the brightness of the

screen (scale: 1-100).

Nonfunctional Requirement

The reaction time of Anti-Lock Braking System should be less than 200
ms.

6/27

Requirements Classification

Requirements may be classified according to how detailed they are:

Business Requirements are the most important and generic (high-level)
software requirements. Their source is the domain of the
software and they change rarely.

User Requirements define the features and services of the software that
are necessary for its users. They are more detailed than the
business requirements.

System Requirements are the most low-level software requirements. They
specify details necessary for the stakeholders to understand
and approve what the software should provide.

7/27

Complexity of Requirements Engineering

The Requirements Engineering is difficult because [2]:
» Stakeholders often don’t know what the software should do.
» Stakeholders may have unrealistic expectations.
» Stakeholders define the requirements in the language of their domain,

which may have some hidden meanings or cannot be immediately
understandable.

» Different stakeholders may have different expectations, resulting in
conflicts of the requirements.

8/27

Notes

Notes

Notes

Notes

Overall Requirements Engineering Process Not
otes

Feasibility R‘];_"i'”""“‘ ts Requirements Requirements
Study and Ao Specification Validation

| |

System and Requirements

: Documentation

Requirements

Feasibility System
Report Model

L [

9/27

Elicitation And Analysis of Requirements Not
otes

Requirements
Specification

Requirements
Verification

Domain Requirements Requirements
Exploration Prioritization Documentation
The beginning

Requirements Conflict
Elicitation Resolving

I P
G

3

10/27

User Stories
Notes

User Stories are the main tool for requirements Elicitation and Analysis
in agile methods. However, this process starts with an Initiative (akin to
the Product Goal), which are further broken down into Epics (big User

Stories) that are then simplified to User Stories. These stories are source
of Tasks that should be performed in order to implement User Stories [3].
Formally, a User Story captures a description of a software feature from an

end-user perspective [4]. However, the User Story is not the whole require-
ment. It is just an entry point for a discussing with the Product Owner

(or similar representative of stakeholders) the details of requirements, and
to specifying the Acceptance Criteria that allow the Developers and/or
Stakeholders to check if the requirement was implemented correctly.

The next slide summarizes the entire description of a single requirement
as defined in agile methods. The User Stories originate from Extreme

Programming, but may be applied in Scrum and other agile approaches.

11/27

User Stories
Notes

Card Conversation Confirmation

The details
User Stories of a User

are written Story are
down on discovered
cards and and specified

Acceptance
Tests verify
the imple-

may contain in a conver-
estimations, sation with
notes etc. the Product

mentation.

Owner.

Requirement

12/27

User Story

Notes
User Story Structure
As a <specific user, Persona, role>, I want <need>, so that <problem to
solve, goal to achieve>.
User Story Alternative Structure (5W)
As a <who> <when> <where>, I want <what>, so that <why>.
User Story Alternative Structure (BDD)
As a <who> <when> <where>, I want <what>, so that <why>.
Scenario 1: <name of the scenario>
Given <first initial condition>
(And <second initial condition>)
‘When <scenario trigger>
Then <expected result>
13/27
Scenarios
Notes
Scenarios are another tool for requirements Elicitation and Analysis in
both traditional and agile software development methods. The scenario
describes a user interaction with the software. Note, that the user is not
necessary a human. It can be an external system or organization. The
scenario hast to meet several conditions:
1. It must specify the state of the system at the beginning of the scenario.
2. It has to describe the normal flow of events in the scenario.
3. It has to identify exceptions and how to handle them.
4. Tt should contain the information about other activities that may
happen at the same time.
5. It must describe the state of the system after the scenario is finished.
14/27
Use Cases
Notes
In traditional software development methods the scenarios may be ex-
pressed in a form of UML Use Case Diagrams. An example of such a
diagram is shown in the next slide. The sticky figures are actors. An actor
represents a role that include human users, other software, hardware or
other systems. The ellipses are use cases which define the interaction with
software or the services that the software provides. Each use case is rather
a collection of scenarios than a single scenario. Some of them describe the
alternative ways of preforming the same use case. The use case diagrams
are not enough to describe them so other UML diagrams have to be used
to specify their details, like the sequence diagram presented in the first
after the next slide.
15/27
Use Cases
Notes

Multimedia System

Store data ovies Provider System

YT
\

X

Premium User

16/27

Use Cases
Notes

X

‘Watchmaker

create
i

D wind D

17/27

Ethnography And Prototyping Notes

Prototyping is used both in agile and traditional software development

methods to tackle the analysis of complex and ambiguous requirements.
It involves preparing and delivering to the users a prototype version of
the software that implements only the features that are defined by such

requirements. This allows the developers to get feedback information on
how well the requirements have been recognized.
The prototyping can be combined with the ethnography. In the software

engineering ethnography means observing the work customs of people who
will be the users of the developed software. An analyst who performs the

ethnography may discover patterns of work carried out by future software
users that are not described in formal documents and this can have impact
on how the software prototype should work. Introduction of the prototype

to the work environment of these people can have further consequences
that again may be discovered by the analyst. After several such iterations

a balance should be reached, that allows the developers to finish analysing
the examined requirements. Please note, that the ethnography cannot be
applied to elicitation and analysis of formally defined requirements.

18/27

Ethnography And Prototyping Notes

Ethnographic " Detailed
[analysis Meetings ethnography

Prototype
validation

System
Prototyping

System
development

19/27

Requirements Validation
Notes

According to the Chaos Report, issues with requirements are the most
common cause of software projects failures. A mistake in requirements is

more expensive to correct that the bug in the code. It is then crucial to
make sure that the requirements are:

» clearly defined,

» really important,

» complete,

» feasible,

» verifiable.
This is the responsibility of the requirements validation process. There are
several methods that can be used to reach its objective:

» Requirements Reviews,

» Prototyping,

» Acceptance Testing,
» Automated Validation (if Formal Methods are used).

20/27

Requirements Management

As the software project progresses the requirements may, and usually
change. Not all of them alternate at the same rate. These of them that
steam directly from the domain are less likely to change. Others, that
are dependent on external factors, like the law regulations are more frag-
ile. The most important cause of the changes is the knowledge about the
product that the software engineers gather as the time progresses (see next
slide).

21/27
Requirements Management
Initial Deepened
understanding understanding
of a problem of a problem
Initial Modified
requirements requirements
Time
22/27

Requirements Management

To manage the changes in requirements software engineers needs to have
a method of tracking them and a procedure to manage them. Tracking
the changes in requirements is relatively easy in agile methods, with short
iteration time and rich feedback information. In traditional methods it
may involve additional effort. However, in both cases it requires knowing
what is the origin of the requirements, how they are related to each other
and how their change will impact the design of the software.

23/27

Requirements Management

Identificd Problem analysis Analysis of the Corrected
problem Implementation |Feduirements

1 change change and cost | —
of the change

Epecification estimation

24/27

Notes

Notes

Notes

Notes

Bibliography

Notes
W Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requrements Engi-
neering. Cham, Switzerland: Springer, 2017.
W Gerard O’'Regan. Concise Guide to Software Engineering. Cham,
Switzerland: Springer, 2017.
@ User stories with examples and a template. 2023. URL: https://www.
atlassian.com /agile /project-management /user-stories.
C:‘ What is User Story? 2023. URL: https://www.visual-paradigm.com
guide/agile-software-development /what-is-user-story/.
25 /27
Questions
Notes
26 /27
THE END
Notes
27 /27

Notes

https://www.atlassian.com/agile/project-management/user-stories
https://www.atlassian.com/agile/project-management/user-stories
https://www.visual-paradigm.com/guide/agile-software-development/what-is-user-story/
https://www.visual-paradigm.com/guide/agile-software-development/what-is-user-story/

	Motto
	Introduction
	Requirements Elicitation And Analysis
	User Stories
	Scenarios
	Ethnography And Prototyping

	Requirements Validation
	Requirements Management
	Ending
	Books
	online

