
Software Engineering — Test Automation

Arkadiusz Chrobot

Department of Information Systems, Kielce University of Technology

Kielce, January 6, 2025

1 / 23

Outline

Introduction

Unit Testing

End-To-End Testing

2 / 23

Motto

”Why program by hand in five days what you can spend five years of your
life automating?”
— Terence Parr

3 / 23

Motto

Source: xkcd.com

4 / 23

Notes

Notes

Notes

Notes

http://xkcd.com/1319/


Introduction

Test Automation not only reduces the costs of the Quality Control, but
also allows software engineers to monitor the progress of their work and
allows them to safely (to some extent) introduce modifications to the code.
Automated tests are also a form of software documentation. The automa-
tion makes also the tests repeatable. However, to bring these benefits, the
test automation has to be done the right way.
In this lecture, we are going to discuss the principles and tools that allow
software engineers to automate the unit, integration and system tests.

5 / 23

Unit Testing
F.I.R.S.T Principles

Automated unit (and also integration) tests should follow the F.I.R.S.T
principles:

Fast Tests should be fast. They are supposed to provide feedback
to software engineers as soon as possible. If they are slow,
then programmers tend to avoid running them, and that
causes defects to stay undetected in the code for a long time.

Independent No test should depend on the outcomes of other tests.
They should also not depend on the order in which they
are run. Otherwise, a failure of one of the tests will cause a
cascade of failures in next tests.

Repeatable It should be possible to run tests in any reasonable environ-
ment. A software engineer should be able to perform tests
on her or his laptop, as well as in a CI/CD pipeline.

6 / 23

Unit Testing
F.I.R.S.T Principles — Continued

Self-Validating The result of a test should be an information, whether
it has passed or failed. The cause of the failure is an im-
portant piece of information, but it shouldn’t obscure the
outcome of a test. A software engineer shouldn’t be forced
to read through long logs in order to find out whether the
test was successful, or not.

Timely Tests should be created before the production code they are
intended to verify. Otherwise, the code may turn out to be
difficult or even impossible to test.

7 / 23

Unit Testing
Test-Driven Development

The last of the F.I.R.S.T rules summarizes the Test-Driven Development
(TDD) methodology of creating software, whose key principles are:

1. Write unit tests before the production code.
2. If a unit test fails, then write production code only to pass this test.
3. Don’t write more unit tests.
4. Write only as much production code as it is required for passing single

failing test.
The TDD has probably as many proponents as opponents. The latter
point out, that focussing too much on passing tests may result in poor
software architecture and usability, if the test cases are chosen incorrectly.
If programmers don’t follow the 3rd principle, then they may create tests
that block any possibility of modifying the code.
The TDD approach is certainly useful, but it should be applied with care.

8 / 23

Notes

Notes

Notes

Notes



Unit Testing
Tools

Many libraries and frameworks have been developed, that support unit
and integration testing. The most popular in Java ecosystem is the JUnit
library, that currently is available in its fifth version. An interesting
alternative to JUnit is TestNG , however JUnit is part of a larger family of
unit test libraries, commonly referred to as xUnit. The first member of this
family is the SUnit, developed for the programming language Smalltalk.
The JUnit, like other unit test libraries, allows software engineers to sep-
arate the test code from the production code. It means that tests are not
by default deployed to the production environment. Moreover, JUnit is
supported by popular build automation tools, like Maven or Gradle.
Tests in JUnit are implemented in separate classes. The name of the class
is usually derived from the name of the class that its tests verify, but must
end, or begin, with the word Test or Tests. Each test is implemented
as a separate method, marked with an appropriate annotation. It is rec-
ommended that such a method should contain only one assertion, but
sometimes it is necessary to add more than one.

9 / 23

Unit Testing
Annotations

JUnit 5 provides many annotations that make it possible to create tests.
Some of them are listed in the table 1.

Table: JUnit 5 Annotations

Annotation Description
@Test Marks a method as a test method.
@ParameterizedTest Denotes that a method is a parametrized

test.
@RepeatedTest Allows the test to be repeated.
@TestMethodOrder Defines the order of test methods execution.
@Disabled Disables the test.
@Timeout Specifies the timeout for a test.
@BeforeEach The method is performed before every test.
@AfterEach The method is performed after every test.
@BeforeAll The method is performed before all tests.
@AfterAll The method is performed after all tests.

10 / 23

Unit Testing
Annotations

The parametrized test method requires another annotation that speci-
fies its source of input data and expected results. This annotation is
@MethodSource. The argument for this annotation is the name of a static
method that provides the needed data. That method should return a
stream of objects of the Arguments class.
The @RepeatedTest annotation also requires an argument, which is the
number of test repetitions.

11 / 23

Unit Testing
Assertions

Assertions are conditions that should always be met, if the code under
verification works correctly. In JUnit terminology an assertion is a static
method of the Assertions class, that checks if the test has passed, or
not. Some of them are described in the table 2. There are many over-
loaded versions of those methods, for different data types of expected and
actual parameters. Some of them accept an additional parameter, that
is a message displayed, when a test fails. The JUnit makes it possible to
use assertions from other libraries or frameworks, like Hamcrest .

12 / 23

Notes

Notes

Notes

Notes

https://junit.org/junit5/
https://testng.org/
https://junit.org/junit5/docs/current/user-guide/
https://hamcrest.org/


Unit Testing
Assertions

Table: JUnit 5 Annotations

Assertion Description
assertArrayEquals(expected,
actual)

Asserts that the expected
and actual arrays contain
the same values.

asertEquals(expected, actual) Asserts that expected value
is equal to actual.

assertNotEquals(expected,actual) The opposite of the above as-
sertion.

assertTrue(condition) Asserts that the condition is
true.

assertFalse(condition) Asserts that the condition is
false.

assertNull(reference) Asserts that the reference is
null.

assertNotNull(reference) Asserts that the reference is
not null.

13 / 23

Mocks

The automated integration tests may require test doubles. There are sev-
eral frameworks that help to create mocks and other such objects. For
Java one of them is EasyMock . In this lecture however, another such a
framework is described, Mockito .
To make the code easy to test, software engineers often apply the Depen-
dency Injection design pattern. In this pattern an object doesn’t create
internally objects it needs, instead it receives them usually by constructor
parameters. This allows programmers to apply mocks easier.
The test class that needs to apply mocks form the Mockito framework
needs to be annotated with the @ExtendWith annotation. The argu-
ment for this annotation should be MockitoExtension.class. The ref-
erence to the mocked object should be marked with the @Mock anno-
tation. The method that uses this reference should check if it is not
null. The behaviour of the mock may be specified with the use of the
when(condition).thenReturn(result) statement.

14 / 23

Mocks

The Mockito framework provides also spies. A spy is an object that wraps
up another object, and verifies how it behaves under tests, for example
how many times its methods are invoked. The spy can be created with
the use of the @Spy annotation or by passing an actual object to the static
spy() method. To verify how many times a given method of the spied
object has been invoked the following statement can be applied:

verify(spyReference, atLeastOnce()).methodName(arguments)
Instead of atLeastOnce() several other methods for counting invocations
may be applied, like never(), atMostOnce().

15 / 23

End-To-End Testing

The End-To-End (E2E) Tests are form of functional tests, that are per-
formed on the system testing level. They are often performed manually
for the first time, but then they can be automated. There are several tools
that make it possible. Choosing them depends on the verified software
user interface. If it is text-based, then simple input and output redirec-
tion and some shell scripting is enough. In case of applications with GUI,
tools may be used that record the interaction with user and then replay it.
Some of them can convert the recording into a script, which then may be
modified. An example of such a tool is QF-TEST . Unfortunately, these tools
have some limitations, that may exclude them from using in particular
situations. In such cases the automated test can be created manually with
the use of special libraries. In Java for the AWT and Swing-based GUIs
are available Jemmy and Jemmy 2 libraries. For JavaFX-based GUIs, a
better choice is the TestFX library.

16 / 23

Notes

Notes

Notes

Notes

https://easymock.org/
https://site.mockito.org/
https://www.qfs.de/en/index.html
https://github.com/TestFX/TestFX


End-To-End Testing
TestFX Library

The TestFX library allows the testers to create a (virtual) robot, that
clicks buttons, populates text fields, selects options from menu, in short,
uses the GUI. Although the library provides its own assertion, it requires
support from testing library, like JUnit, to be able to perform tests. The
class that implements tests should inherit the TestFX ApplicationTest
class. The test methods can get references to elements of the GUI, using
CSS selectors for attributes like classes, IDs and others. The method
responsible for locating these elements is lookpu(). It returns an object
that has the querryAll() method, that returns a collection of elements
that have the required attribute. A single object from this collection can be
acquired with the use of the next() method returned by the iterator()
method. An element can be clicked with the use of clickOn() method.
The TestFX library has its own set of matchers, i.e. objects that check
if a given condition is met. For example the hasText() method of the
LabeledMatchers class checks whether a given GUI element has the re-
quired description. There is also the FXAssert class that provides asser-
tions methods, like verifyThat().

17 / 23

End-To-End Testing
Automated Tests for Web Applications

Tests of Web Applications may be automated with the use of tools like
QF-TEST, but there are also tools that allow the software engineers to
create automated tests manually. Nowadays, all of them use the WebDriver

protocol that allows them to interact with, and control a web browser. All
modern browsers support this API, and their producers provide necessary
drivers. Among these tools are frameworks like Cypress and libraries like

Selenide . The oldest and probably the most popular of them is Selenium .

18 / 23

End-To-End Testing
Automated Tests for Web Applications

The most frequently used design pattern in software that implements web
application tests is the PageObject pattern [1]. It requires creating objects
that represent and control web pages of the tested application. The Figure
1 describes this concept.

tests

object that repre-
sents the web page

web page

Figure: The PageObject Design Pattern

19 / 23

End-To-End Testing
Automated Tests for Web Applications — Selenium

The most important class of the Selenium library is the WebDriver, that al-
lows the test to get access to and control web page elements. The elements
may be retrieved with the use of the findElement() or findElements()
methods. Several types of locators may be applied, the most popular be-
ing XPath. Others include CSS Selectors, IDs, names, class names, tag
names, links, and partial link texts. The get() method of the WebDriver
class orders the web browser to load a specified web page.
A single element of the web page is represented by an object of the WebElement
class. Selenium allows for implicit and explicit waiting for a web page ele-
ment to become available. The implicit waiting period is defined globally.
The explicit waiting strategies are provided by the WebDriverWait and
FulentWait classes. The latter is the most flexible.

20 / 23

Notes

Notes

Notes

Notes

https://www.w3.org/TR/webdriver2/
https://www.cypress.io/
https://selenide.org/
https://www.selenium.dev/


Bibliography

[1] Unmesh Gundecha. Selenium Testing Tools Cookbook. Second Edition.
Birmingham, UK: Packt Publishing, 2015.

21 / 23

Questions

?

22 / 23

The End

Thank You for Your attention!

23 / 23

Notes

Notes

Notes

Notes


	Motto
	Introduction
	Unit Testing
	End-To-End Testing
	Ending
	Books

