
Fundamentals of Programming 2
Binary Search Trees

Arkadiusz Chrobot

Department of Information Systems

May 7, 2024

1 / 62

Outline

1 Introduction

2 Definitions

3 The Implementation of bst
The Data Type of bst Node
Insertions in bst
Binary Tree Traversal
Counting Nodes
Minimum And Maximum Key
Searching For a Node With a Given Key
Removing All Nodes From Binary Tree
Deletions in BST
The main() Function

4 Summary

2 / 62

Introduction

Introduction

Trees and binary trees are non-linear data structures used to store
hierarchically ordered data. In this case non-linearity means that
each node has at most one ”predecessor”, called a parent and an
unlimited number of ”successors”, called children. For binary trees
the number of children that a single node can have is limited to two.
It is worth to notice that trees and binary trees are distinct types
of data structures. They are also subclasses of graphs, which will be
discussed in the next lecture.
Today’s lecture is about binary search trees (bsts), that are a sub-
type of binary trees. Some definitions concerning binary trees and
trees are given in the next slides.

3 / 62

Definitions

Definitions
The Binary Tree

The binary tree is a finite set of nodes that is either empty or contains
a node, called the root, and two disjoint binary trees, called the left
and the right subtree. If these subtrees are not empty then their
roots are called, respectively, the left child and the right child of
the binary tree’s root. Conversely, the root is called their parent.
The degree of a node (the number of its children) in the binary tree
is limited to two. Nodes with a non-zero degree are called internal
nodes, and nodes with a degree equal to zero are called leaves. Each
node also has a property called a level. The level of the root is zero
and the level of every other node is greater by one than the level of
the root in the smallest subtree that the node is part of. The height
of the tree is greater by one than the maximal level of its nodes.
The binary tree is also an ordered tree or a flat tree, because the
order of its subtrees is important.

4 / 62

Definitions

Definitions
The Binary Tree And The Tree

A tree differs from a binary tree in the respect, that it always has at
least one node, and the level of each node in the trees is not limited.

5 / 62

Definitions

Definitions
The Full Binary Tree And The Complete Binary Tree

If each node in a binary tree has a degree of either two or zero, then
it is a full binary tree. If a binary tree of a given height has all
possible nodes, perhaps with the exception of the last level, then it
is the complete binary tree.

A full binary tree A complete binary tree

It’s worth to notice that in Computer Science the trees grow upside-
down

6 / 62

Definitions

Definitions
Binary Search Tree (bst)

The binary search tree (bst) is a binary tree that each node stores
a data item called a key. With the key may be associated another
data item, called a value. Such a binary tree can be used to build
a dictionary. It is another data structure where the key identifies
the value. In the bst the order of the keys is determined by the
following principle:

The order of keys in the bst
Let x be a node in the bst. If y is a node in the left subtree of x,
then key(x) ≥ key(y). If y if a node in the right subtree of x then
key(x) ≤ key(y).

7 / 62

The Implementation of bst

The Implementation of bst

In the lecture, an implementation of the bst in a form of a dynamical
data structure is presented, that adheres to the definition given in
the previous slide. It stores only keys. Please notice however, that
the definition is a little ambiguous. If the operation of adding a
node to the bst should work according to it, then it would have a
problem when the key in the new node was already in the tree —
should the new node be added on the left side of the node with the
same key or on the right side? To avoid this issue the keys in the
demonstrated bst are unique. It is the most common approach to
this issue.

8 / 62

The Implementation of bst The Data Type of bst Node

The Implementation of bst
The Data Type of bst Node

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<time.h>
4

5 struct bst_node
6 {
7 int key;
8 struct bst_node *left_child, *right_child;
9 } *root;

9 / 62

The Implementation of bst The Data Type of bst Node

The Implementation of bst
The Data Type of bst Node

The header files included to the program (lines 1–3) provide decla-
rations of functions, which allow the program to use the standard
output stream, to allocate and deallocate the heap memory and to
apply pseudorandom numbers generator (prng).
Please notice, that the definition of the data type for a single bst
node (lines 5–6) reminds a lot, a similar construct from the program
that uses the doubly linked list. However, the purpose of the struc-
ture members is different. The key member stores the key, which
is an integer of the int type. In the line no. 8 are declared two
pointer fields, called left_child and right_child. They are used
for storing the addresses of, respectively, the left and the right child
of a given node. If the node is a leaf (has no children) then the value
of these fields will be null. In an inner node, only one pointer field
can be an empty pointer.

10 / 62

The Implementation of bst The Data Type of bst Node

The Implementation of bst
The Data Type of bst Node

In some implementations of bst each node has another pointer field,
usually called parent, which points to the node’s parent. Only in
the root this field is an empty pointer.
In the line no. 9 of the slide no. 9 is declared a global variable
named root. It is a pointer to the root of the bst. Its default value
is null meaning that the bst also is initially empty.

11 / 62

The Implementation of bst Insertions in bst

The add_node() Function

1 void add_node(struct bst_node **node, int number)
2 {
3 while(*node && (*node)->key != number)
4 if((*node)->key > number)
5 node = &(*node)->left_child;
6 else
7 node = &(*node)->right_child;
8 if(!*node) {
9 *node = (struct bst_node

*)malloc(sizeof(struct bst_node));↪Ï

10 if(*node) {
11 (*node)->key = number;
12 (*node)->left_child =

(*node)->right_child = NULL;↪Ï

13 }
14 }
15 }

12 / 62

The Implementation of bst Insertions in bst

The add_node() Function

The add_node() function is responsible for adding a new node with
a given key to the bst. It returns no value, but it has two param-
eters. The first of them is a pointer to a pointer called node. This
parameter is used for passing the address of the root pointer. The
second one is a variable of the int type called number. By this pa-
rameter the function gets the key that should be stored in the new
node.

13 / 62

The Implementation of bst Insertions in bst

The add_node() Function

The objective of the while loop (lines 3–7) is finding a place in the
bst for the new node, using the key the node will store. The loop
is performed as long as the pointer pointed by node is not empty
and the node pointed by this pointer has a different key than the
one that will be stored in the new node. If both these conditions
are met, then the loop checks if the key in the node, which address
is stored in the pointer pointed by the node parameter, is greater
than the key for the new node (line no. 4). If so, then the address
of that node’s left_child field is assigned to the node parameter
(line no. 5). The smaller keys are stored in the left subtree and this
is where the new node should be added. If the condition from the
4th line is not fulfilled, then the address of the node’s right_child
field is assigned to the node parameter, meaning that the new key
should be in the right subtree, where larger keys are stored.

14 / 62

The Implementation of bst Insertions in bst

The add_node() Function
After the while loop stops, the add_node() verifies, if the pointer
pointed by the node parameter is empty (line no. 8). If not, then it
means that the loop has found a node that has the same key as the
one that is stored in the number parameter. The keys in the bst
have to be unique, so the add_node() will exit in that case without
doing anything else. However, if the condition in the 8th line is met,
then the function will try to allocate memory for the new node (line
no. 9). It checks the outcome of the operation in the line no. 10
and if successful it assigns the key stored in the number parameter to
the new node (line no. 11) and initializes both of the node’s pointer
fields with the null value (line no. 12).
Please notice, that if the while loop stops at once, then it means
that the bst is empty and add_node() will add the first node to
the bst. If, however, the loop performs several iterations and stops
when the *node expression in the 3rd line is false, then it means
that the node stores an address of one of the pointer fields of the
node that should be the parent of the new node. 15 / 62

The Implementation of bst Insertions in bst

Insertion in bst

The next slide shows an animation that illustrates schematically
how several nodes are added to the bst. The order of the nodes’
keys is as follows: 4, 2, 1, 3, 5.

16 / 62

The Implementation of bst Insertions in bst

Insertion in bst

4

2

1 3

5

17 / 62

The Implementation of bst Insertions in bst

Insertion in bst

4

2

1 3

5

17 / 62

The Implementation of bst Insertions in bst

Insertion in bst

4

2

1 3

5

17 / 62

The Implementation of bst Insertions in bst

Insertion in bst

4

2

1 3

5

17 / 62

The Implementation of bst Insertions in bst

Insertion in bst

4

2

1 3

5

17 / 62

The Implementation of bst Insertions in bst

Insertion in bst

4

2

1 3

5

17 / 62

The Implementation of bst Binary Tree Traversal

Binary Tree Traversal

There are three recursive algorithms for traversing a binary tree (in
fact any tree):

1 in-order traversal,
2 pre-order traversal,
3 post-order traversal.

In all these algorithms the left subtree is traversed recursively before
the right subtree. Only the root is visited in a different order in each
of them. Most of other binary tree algorithms are based on these
three. The binary tree traversal algorithms are usually implemented
in a form of recursive functions.

18 / 62

The Implementation of bst Binary Tree Traversal

Binary Tree Traversal
In-Order Traversal

The in-order traversal algorithm is as follows:
1 traverse the left subtree recursively,
2 visit the root,
3 traverse the right subtree recursively.

The next slide shows an example bst and the outcome of a func-
tion that displays the keys stored in this bst using the in-order
algorithm.

19 / 62

The Implementation of bst Binary Tree Traversal

Binary Tree Traversal
In-Order Traversal

4

2

1 3

5

Outcome
1, 2, 3, 4, 5

20 / 62

The Implementation of bst Binary Tree Traversal

The print_bst_inorder() Function

1 void print_bst_inorder(struct bst_node *node)
2 {
3 if(node) {
4 print_bst_inorder(node->left_child);
5 printf("%4d ",node->key);
6 print_bst_inorder(node->right_child);
7 }
8 }

21 / 62

The Implementation of bst Binary Tree Traversal

The print_bst_inorder() Function

The print_bst_inorder() function uses the in-order traversal al-
gorithm to print the keys stored in the bst on the screen. It doesn’t
return any value, but it has a parameter named node which is a
pointer to a node. The argument for this function is the address of
the tree root.
The function first checks if the node is not an empty pointer (line no.
3). If it is so, then print_bst_inorder() invokes itself recursively
for the left child of the node pointed by the node parameter and,
in consequence, for the entire left subtree of that node (line no. 4).
When the function returns from the recursive calls, then it prints the
key stored in the node pointed by the node parameter (line no. 6)
and once again it invokes itself recursively, but this time for the right
child of the node, and in consequence, for its whole right subtree.

22 / 62

The Implementation of bst Binary Tree Traversal

The print_bst_inorder() Function

It’s worth noting that the sequence of recursive calls ends, when
the function is invoked for a non-existing node. In that case, the
condition in the 3rd line is not satisfied, this instance of the function
immediately exits and the control returns to the function’s earlier
instance.

23 / 62

The Implementation of bst Binary Tree Traversal

Binary Tree Traversal
Pre-Order Traversal

The pre-order traversal algorithm is as follows:
1 visit the root,
2 traverse recursively the left subtree,
3 traverse recursively the right subtree.

This algorithm, unlike the in-order traversal algorithm, visits the
root, before traversing the subtrees. The next slide shows an ex-
ample bst and the outcome of a function that uses the post-order
traversal algorithm to print keys stored in this tree.

24 / 62

The Implementation of bst Binary Tree Traversal

Binary Tree Traversal
Pre-Order Traversal

4

2

1 3

5

Outcome
4, 2, 1, 3, 5

25 / 62

The Implementation of bst Binary Tree Traversal

The print_bst_preorder() Function

1 void print_bst_preorder(struct bst_node *node)
2 {
3 if(node) {
4 printf("%4d ",node->key);
5 print_bst_preorder(node->left_child);
6 print_bst_preorder(node->right_child);
7 }
8 }

26 / 62

The Implementation of bst Binary Tree Traversal

The print_bst_preorder() Function

The print_bst_preorder() is similar to the print_bst_inorder()
function. The only two differences are the name and that the for-
mer is invoked recursively (lines 5–6) after the key from the node
currently pointed by the node parameter is displayed (line no. 4).

27 / 62

The Implementation of bst Binary Tree Traversal

Binary Tree Traversal
Post-Order Traversal

The post-order traversal algorithm is defined as follows:
1 traverse recursively the left subtree,
2 traverse recursively the right subtree,
3 visit the root.

It differs from the two previous in that it traverses both subtrees
(first the left one then the right) first and only then it visits the
root. The next slide shows an example bst and the outcome of a
function that applies the algorithm to display the keys stored in the
bst.

28 / 62

The Implementation of bst Binary Tree Traversal

Binary Tree Traversal
Post-Order Traversal

4

2

1 3

5

Outcome
1, 3, 2, 5, 4

29 / 62

The Implementation of bst Binary Tree Traversal

The print_bst_postorder() Function

1 void print_bst_postorder(struct bst_node *node)
2 {
3 if(node) {
4 print_bst_postorder(node->left_child);
5 print_bst_postorder(node->right_child);
6 printf("%4d ",node->key);
7 }
8 }

30 / 62

The Implementation of bst Binary Tree Traversal

The print_bst_preorder() Function

The print_bst_postorder() function is also similar to the two
previously presented. It has however a different name and it invokes
itself recursively for the children of the node pointed by the node
parameter (lines 4–5), before printing the key stored in that node
on the screen.

31 / 62

The Implementation of bst Counting Nodes

Number of bst Nodes

Displaying the keys stored in the bst is not the only use of the
binary tree traversal algorithms. Let’s consider how to count the
nodes of a bst. It turns out that the Divide-And-Conquer method
could be useful in this case:

if a tree is empty, then the number of its nodes is zero,
if the tree is not empty, then the total number of its nodes is
the sum of the number of nodes in its left subtree, of its root
(one node) and of the number of nodes in its right subtree.

Please notice, that the last point corresponds to the in-order traver-
sal algorithm, although any of the binary tree traversal algorithms
could be applied, due to the commutativity of addition.

32 / 62

The Implementation of bst Counting Nodes

The count_nodes() Function

1 unsigned int count_nodes(struct bst_node *node)
2 {
3 if(node)
4 return count_nodes(node->left_child) +

1 + count_nodes(node->right_child);↪Ï

5 else
6 return 0;
7 }

33 / 62

The Implementation of bst Counting Nodes

The count_nodes() Function

The function, presented in the previous slide, counts the number
of bst nodes using the algorithm described in the slide no. 32. It
returns a number of the unsigned int type (the number of nodes
is always natural) and takes the address of the bst root as an argu-
ment.

34 / 62

The Implementation of bst Minimum And Maximum Key

The find_minimum() And find_maximum() Functions

1 struct bst_node *find_minimum(struct bst_node *node)
2 {
3 while(node && node->left_child)
4 node = node->left_child;
5 return node;
6 }
7

8 struct bst_node *find_maximum(struct bst_node *node)
9 {

10 while(node && node->right_child)
11 node = node->right_child;
12 return node;
13 }

35 / 62

The Implementation of bst Minimum And Maximum Key

The find_minimum() And find_maximum() Functions
Finding a bst node with a minimum key is easy. It is the leftmost
node. Similarly, the node with the maximum key is the rightmost
node. The first function presented in the previous slide searches for
the node with minimal key and returns its address. It takes as an
argument the address of bst’s root, which is passed by the node
parameter. The while loop inside the function checks if bst node
pointed by the node parameter exists and if its left_child field is
not an empty pointer (line no. 3). If both expressions in the loop
condition are true, then the address from the left_child field is
assigned to the node parameter (line no. 4). It means that after
the statement is performed, the node will point to the left child of
the current node. The loop stops when it locates a node without a
left child. The find_minimum() function returns then the address
of this node, because it is the bst leftmost node (line no. 5). Please
notice, that the function returns null only in one case — when it
is invoked for an empty bst.

36 / 62

The Implementation of bst Minimum And Maximum Key

The find_minimum() And find_maximum() Functions

The find_maximum() function is similar to find_minimum(), but in
the second expression of the while loop condition it checks if the
right_child field of the node pointed by the node parameter is
an empty pointer. If so, then it assigns the address stored in that
field to the node parameter (line no. 11). When the loop stops
the function returns the address of the node pointed by the node
parameter, because it is the rightmost bst node with the maximal
key.

37 / 62

The Implementation of bst Searching For a Node With a Given Key

The locate() Function

1 struct bst_node *locate(struct bst_node *node, int
number)↪Ï

2 {
3 while(node && node->key != number)
4 if(node->key > number)
5 node = node->left_child;
6 else
7 node = node->right_child;
8 return node;
9 }

38 / 62

The Implementation of bst Searching For a Node With a Given Key

The locate() Function

The objective of the locate() function is to find a bst node that
stores a key passed by the number parameter. It also takes another
argument, which is the address of bst root, passed by the node
parameter. The function returns the address of the node with the
specified key or null if such a node doesn’t exist. Please notice,
that the while loop in this function (lines 3–7) is quite similar to
the while loop in the add_node() function. This time however, the
loop uses a first level (”regular”) pointer. If the pointer is not empty
and points to the node without the given key (line no. 3) then the
function checks if the key in that node is greater than the specified
key (line no. 4). If so, then it assigns the address of the node’s left
child to the node parameter (or null, if the child doesn’t exist),
otherwise it assigns the address of the node’s right child (or null,
if the child doesn’t exist). After the loop stops the value stored in
the node parameter is returned by the function.

39 / 62

The Implementation of bst Searching For a Node With a Given Key

Searching For a Node With a Given Key
Performance

The main advantage of the bst is the time complexity of locating a
node with a given key. It is proportional to the height of the tree.
If the shape of the tree is close to the shape of a full tree, then its
height is expressed as log2(n), where n is the total number of nodes
in the bst.

40 / 62

The Implementation of bst Removing All Nodes From Binary Tree

The remove_bst_nodes() Function

1 void remove_bst_nodes(struct bst_node **node)
2 {
3 if(*node) {
4 remove_bst_nodes(&(*node)->left_child);
5 remove_bst_nodes(&(*node)->right_child);
6 free(*node);
7 *node=NULL;
8 }
9 }

41 / 62

The Implementation of bst Removing All Nodes From Binary Tree

The remove_bst_nodes() Function

The function that removes all nodes from a binary tree uses the post-
order traversal algorithm, as it causes the removal to start from the
leaves. This assures that there is no danger of passing addresses
of non-existent node’s fields to the recursive calls of the function.
After the function exits, the value of the root pointer should be
null. That’s why remove_bst_nodes() assigns this value to the
dereferenced node pointer (line no. 8). This means, that the null
value is assigned to each pointer field of a node, before this node is
deleted, and eventually it will be assigned to the root pointer.

42 / 62

The Implementation of bst Deletions in BST

Deletions in bst
The goal of deleting a bst node is actually to remove a key from this data
structure. It is a quite complex operation. The function that implements
it should properly handle the following cases:

1 there is no node of a given key — this case doesn’t require any deletion
to be preformed,

2 the node to be deleted doesn’t have any children — the node may
be removed, but the null value should be assigned to its parent’s
left_child field (if the node to delete is its left child) or to the
right_child (if the node to delete is its right child),

3 the node to be deleted has only one child — before the node is deleted,
the address of its child should be assigned to its parent’s pointer field
that now points to this node,

4 the node to be deleted has two children — this is the hardest case —
the node cannot be just deleted, another bst node has to be found
that will be removed instead.

43 / 62

The Implementation of bst Deletions in BST

Deletions in bst

The ”another node” mentioned in the previous slide is either the
successor or the predecessor of the node that should be deleted.
The successor is a node with a key that is directly greater than the
key in the node to be deleted. The predecessor stores a key that
is directly smaller, than the key stored in the node to be deleted.
Also, the successor of a node is its right subtree leftmost node and
the predecessor of a node is its left subtree rightmost node. Before
the predecessor/successor can be deleted, the key from this node has
to be assigned to the node that was originally to be deleted.
In the implementation of this operation, that is discussed in this
lecture, the predecessor of the node with two children is always
deleted. First, a function that unlinks the predecessor from the
bst is described and next the function that handles all the cases of
deleting a single node from the bst.

44 / 62

The Implementation of bst Deletions in BST

The isolate_predecessor() Function

1 struct bst_node *isolate_predecessor(struct bst_node
**node)↪Ï

2 {
3 while((*node)->right_child)
4 node = &(*node)->right_child;
5 struct bst_node *predecessor = *node;
6 *node = (*node)->left_child;
7 return predecessor;
8 }

45 / 62

The Implementation of bst Deletions in BST

The isolate_predecessor() Function

The isolate_predecessor() function return the address of the
predecessor of a node to be deleted. It is invoked only from within
the function that deletes the bst node and only if the node has
two children. As an argument it takes the address of a pointer that
points to the left child (the root of the left subtree) of the node to
be deleted. The while loop (lines 3–4) looks for the rightmost node
in the left subtree of the node to be deleted. Please notice, that in
each iteration of the loop the address of the pointer field that points
to the current node right child is assigned to the node parameter.
The loop stops when it finds a node that has no right child. It is
the predecessor of the node to be deleted. The function assigns its
address to the local pointer named predecessor (line no. 5). After
that it assigns the address stored in the predecessor’s left_child
field in the pointer pointed by the node parameter (line no. 6).

46 / 62

The Implementation of bst Deletions in BST

The isolate_predecessor() Function

The predecessor doesn’t have the right child for sure, however it
may have the left one. If this child exists, then its address should be
assigned to the pointer field of the predecessor’s parent, that points
to the predecessor. This assures that the child won’t be lost together
with, possibly its subtrees. If the child doesn’t exist then the null
value should be assigned to the pointer field of the predecessor’s
parent, that pointed to the predecessor — after the predecessor is
unlinked its parent won’t have this child.
When the predecessor is unlinked from the bst, then the function
returns the predecessor’s address and exits (line no. 7).

47 / 62

The Implementation of bst Deletions in BST

The delete_node() Function
1 void delete_node(struct bst_node **node, int number)
2 {
3 while(*node && (*node)->key != number)
4 if ((*node)->key > number)
5 node = &(*node)->left_child;
6 else
7 node = &(*node)->right_child;
8 if (*node) {
9 struct bst_node *node_to_delete = *node;

10 if(!node_to_delete->left_child)
11 *node = (*node)->right_child;
12 else if(!node_to_delete->right_child)
13 *node = (*node)->left_child;
14 else {
15 node_to_delete =

isolate_predecessor(&(*node)->left_child);↪Ï

16 (*node)->key = node_to_delete->key;
17 }
18 free(node_to_delete);
19 }
20 } 48 / 62

The Implementation of bst Deletions in BST

The delete_node() Function

The delete_node() function is responsible for deleting a bst node
that stores a given key. It doesn’t return any value, but takes two
arguments: the address of a pointer that points to the bst root and
the key that should be store in the node to be deleted. Please note,
that the while loop (lines 3–7) is the same as in the add_node()
function. However, when the loop stops the delete_node() func-
tion, unlike add_node(), checks if the node exists (line no. 8). If
not, then the function exits — there is no node in the bst that
stores the given key, so there is nothing to delete. If the node ex-
ists, then the function stores its address in a local pointer named
node_to_delete (line no. 9). Then it checks if the left child of that
node doesn’t exist (line no. 10). If it is so, then the node still can
have a right child. That’s why the delete_node() function assigns
the address stored in the right_child field of the node to be deleted
to the pointer pointed by the node parameter (line no. 11).

49 / 62

The Implementation of bst Deletions in BST

The delete_node() Function
That way, if the node has a parent, the proper field pointer of the
node’s parent will start pointing to the node’s right child. If, how-
ever, the node’s right child doesn’t exist, then the pointer field will
get the null value, which in this case is also correct — after the
node that stores the given key is deleted its parent won’t have this
child.
If the condition in the 10th line is not met then the function checks
the condition in the 12th line, meaning if the right child of the
node to be deleted doesn’t exist. If the condition is met, then it is
known for sure, that the left child exists (because the condition in
the 10th line is not met). In that case the delete_node() function
assigns the address of this child to the pointer pointed by the node
parameter (line no. 13).
If both conditions in the lines no. 10 and no. 12 are not met, then
the node to be deleted has two children. In that case it has to be
replaced by its predecessor.

50 / 62

The Implementation of bst Deletions in BST

The delete_node() Function

That’s why, in the 15th line the delete_node() function invokes
isolate_predecessor() passing, as an argument to that latter
function, the address of the left_child filed of the node, which
originally should be deleted. The result of isolate_predecessor()
is assigned to the node_to_delete pointer (line no. 15). The out-
come of that function is the address of the predecessor of the node
to be deleted. The key from the predecessor is assigned to the node
that originally was to be deleted (line no. 15).
In all the cases that delete_node() should handle, it eventually
invokes the free() function to release the memory allocated for the
bst node pointed by the node_to_delete (line no. 18) and quits.
The next slide illustrates a simple case of deleting a key stored in a
node that has two children.

51 / 62

The Implementation of bst Deletions in BST

Deleting a Node With Two Children

rootnode

4

2

1 3

6

5 7

node_to_delete

52 / 62

The Implementation of bst Deletions in BST

Deleting a Node With Two Children

rootnode

4

2

1 3

6

5 7

node_to_delete

52 / 62

The Implementation of bst Deletions in BST

Deleting a Node With Two Children

rootnode

3

2

1 3

6

5 7

node_to_delete

52 / 62

The Implementation of bst Deletions in BST

Deleting a Node With Two Children

rootnode

3

2

1 3

6

5 7

node_to_delete

52 / 62

The Implementation of bst The main() Function

The main() Function
First Part

1 int main(void)
2 {
3 srand(time(0));
4 for(int i=0;i<10;i++)
5 add_node(&root, -10 + rand() % 21);
6 printf("Number of nodes in the binary search tree:

%u\n", count_nodes(root));↪Ï

7 print_bst_inorder(root);
8 puts("");
9 print_bst_preorder(root);

10 puts("");
11 print_bst_postorder(root);
12 puts("");

53 / 62

The Implementation of bst The main() Function

The main() Function
First Part

First, the main() function initializes the pseudorandom number gen-
erator (line no. 3) and in the for loop it tries to insert into the bst
10 nodes, which keys are integers randomly chosen from the [−10, 10]
interval (lines 4–5). Then, in the 6th line, it displays the number of
nodes in the bst, which is returned by the count_node() function.
In the next lines the main() calls functions that display keys stored
in the bst using, respectively the in-order, pre-order and post-order
traversal algorithms. Please notice, that after each of the function
exits, the put() is called to move the cursor to the next line on the
screen.

54 / 62

The Implementation of bst The main() Function

The main() Function
Second Part

1 if(root) {
2 printf("Minimum key: %d\n",

find_minimum(root)->key);↪Ï

3 printf("Maximum key: %d\n",
find_maximum(root)->key);↪Ï

4 }
5 int number_to_delete = -10+rand()%21;
6 printf("Key to be deleted: %d\n", number_to_delete);
7 struct bst_node *result = locate(root,

number_to_delete);↪Ï

8 if(result)
9 printf("The key is in the binary search tree:

%d\n", result->key);↪Ï

10 else
11 puts("The key is not in the binary search

tree.");↪Ï

55 / 62

The Implementation of bst The main() Function

The main() Function
Second Part

The main() function also calls functions that find the nodes stor-
ing the minimal and maximal key (lines 1–4). Because these func-
tions return null if and only if they are invoked on an empty bst,
then the main() checks in the line no. 1, if it is not the case.
When the condition is met, then the pointer returned by these func-
tions can be immediately dereferenced and the keys stored in nodes
pointed by them can be displayed (lines 2–3). Next the main()
function randomly chooses a key to be removed and stores it in the
number_to_delete local variable (line no. 6). The key is then dis-
played and the locate() function is invoked, which tries to find a
node that stores such a key (line no. 7). The outcome of that latter
function is assigned to a local pointer named result. The main()
function checks if it is not an empty pointer (line no. 8) and prints
the key stored in the node that this pointer points to. Otherwise, it
prints an appropriate message.

56 / 62

The Implementation of bst The main() Function

The main() Function
Third Part

1 delete_node(&root, number_to_delete);
2 printf("The BST after trying to delete the key

%d.\n",number_to_delete);↪Ï

3 printf("Number of nodes in the binary search tree:
%u\n", count_nodes(root));↪Ï

4 puts("Keys in the BST.");
5 print_bst_inorder(root);
6 puts("");
7 remove_bst_nodes(&root);
8 return 0;
9 }

57 / 62

The Implementation of bst The main() Function

The main() Function
Third Part

Next, the main() function calls the function that deletes the bst
node with a given key (line no. 1). After that the program displays
messages, informing the user, which key it tried to delete (line no.
2) and how many nodes there are in the bst now (line no. 3). Then
it displays all keys stored in the bst using the in-order traversal
algorithm (line no. 5). This order allows the user to quickly de-
termine, which key has been deleted. Finally, the main() calls the
remove_bst_nodes() function to delete all the nodes in the bst
(line no. 7) and exits (line no. 8).

58 / 62

Summary

Summary

The main advantage of the bst is the time complexity of operation
performed on that tree, which is proportional to its height. If the
shape of the bst is close to the shape of a full binary tree, then its
height is log2(n), where n is the number of nodes in the bst. Unfor-
tunately, if keys are added to the tree in an increasing or decreasing
order, then the resulting bst will become a list and its height will
be n.
To avoid such edge cases the balanced trees, such as the avl trees and
red-black trees, can be used instead of bsts. Most of the operations
on bst can be easily implemented with the use of both the recursive
and non-recursive (using loops) functions. The tree traversal (and
related) operations are an exception. They are implemented the
best as recursive functions.

59 / 62

Summary

Summary

Please notice, that the binary trees may be used to represent arith-
metic expressions. These sorts of binary trees are called binary
expression trees. If we apply the in-order traversal algorithm to
print the content of the tree nodes on the screen then we will get
the expression in conventional (infix) notation. If we use the pre-
order traversal algorithm for the same purpose, then we will get the
expression in the Polish (prefix) notation (or pn). Finally, the post-
order traversal algorithm will give us the expression in the reverse
Polish (postfix) notation (or rpn).

60 / 62

The End

Questions

?

61 / 62

The End

The End

Thank You For Your Attention!

62 / 62

	Introduction
	Definitions
	The Implementation of bst
	The Data Type of bst Node
	Insertions in bst
	Binary Tree Traversal
	Counting Nodes
	Minimum And Maximum Key
	Searching For a Node With a Given Key
	Removing All Nodes From Binary Tree
	Deletions in BST
	The main() Function

	Summary
	The End

