
Fundamentals of Programming 2
Stack And Queue

Arkadiusz Chrobot

Department of Information Systems

March 25, 2024

1 / 61

Outline

1 Data Structures

2 Stack — Introduction

3 Stack — Implementation

4 Reverse Polish Notation

5 Queue

6 Summary

2 / 61

Data Structures

Data Structures

The dynamic allocation and deallocation of memory allows program-
mers to build data structures that are not a part of the language
standard. Most of them are based on structures and pointers, but
they also require specific operations that are implemented using
functions.
The next slide shows a classification of some of the data structures
that can be created that way. In this lecture, the stack and queue
will be described.
The concept of stack has already been discussed in the lecture on
the recursion. It is a data structure where the order of adding and
removing elements (called nodes) is defined as Last In First Out
(lifo), meaning they are retrieved from the stack in reverse.
The queue is a similar data structure, but its nodes are stored in
the First In First Out (fifo) order.

3 / 61

Data Structures

Classification of Data Structures

dynamic
data
struc-
tures

linear

lists

singly-
linked

circular

doubly-
linked

circular

stacks queues

double-
ended
queues
(deques)

input-
restricted
deques

output-
restricted
deques

non-
linear

graphs

directed

binary
trees trees

undirected

Classification of data structures

4 / 61

Stack — Introduction

Stack — Introduction

The stack can be implemented in several ways. One of them is a
dynamic data structure, in which nodes, that store data, are linked
together with the use of pointers. It is also a special case of another
data structure called a list. To better understand what the stack
is, let’s assume, that a list is a collection of linked together nodes
with two ends. The stack is a kind of list in which operations of
adding and removing elements can be applied to only one of its
ends. Usually the stack is depicted as a vertical list, with one end
called the top.

5 / 61

Stack — Implementation

Stack — Implementation

Implementing the stack requires not only defining the type of its
nodes, but also specifying operations that can be applied to this
data structure. The first part can be accomplished in the C language
using structures, and the second with the use of functions.
In this lecture it is assumed that the stack should store, in its nodes,
numbers of the double type, however that can be changed according
to the programmer’s need. Generally, a single node of the stack can
even store more than one value.

6 / 61

Stack — Implementation

Stack — Implementation
Data Type For Stack Node

struct stack_node {
double number;
struct stack_node *next;

};

7 / 61

Stack — Implementation

Stack — Implementation

The previous slide contains a definition of a type of structure which
also specifies the type of single stack node. It has two fields. The
first one stores data, in this case a number of the double type. The
second member of the node type is a pointer. There are stacks
with elements containing more than one pointer field. However, in
any dynamically allocated stack, there should be at least one such
a pointer field in each node. Please notice the type of the pointer
field. It is the same as the type of the structure that contains it. It
means that the structure is recursive and that the pointer can point
to another structure of the same type as the one it is contained in.
In other words, thanks to this pointer, the nodes of the stack can
be linked together.

8 / 61

Stack — Implementation

Stack — Implementation

The nodes of the stack are linked together using pointer fields. How-
ever, to perform an operation on the stack, the program has to know
where the top of the stack is. Therefore, a separate pointer, local or
global, is needed to store the address of the top of the stack. This
pointer can have any name, but usually it is referred to as a stack
pointer.
The only thing now missing from the implementation of the stack
are the operations. The most basic of these are: adding a new
element to the stack, called push, and removing an element from
the stack, called pop. Both operations are performed on the top of
the stack. An optional operation is retrieving the data stored in the
top node of the stack, called peek. All three operations are defined
in the lecture.

9 / 61

Stack — Implementation

Stack — Implementation
The push() Function

The push operation is implemented in a form of push() function.
The working of this function should satisfy the following conditions
(assertions):

1 Before the function is performed the stack pointer has to point
the top element of the stack or be an empty pointer — in the
latter case the stack is also empty.

2 The function as a result should return an address that either
is the same as the one stored in the stack pointer — in that
case adding a new element to the stack has failed — or it is an
address of a new element on the top of the stack — in that case
the operation has been successful.

10 / 61

Stack — Implementation

Stack — Implementation
The push() Function

1 struct stack_node *push(struct stack_node *top, double number)
2 {
3 struct stack_node *new_node = (struct stack_node *)
4 malloc(sizeof(struct stack_node));
5 if(new_node!=NULL) {
6 new_node->number = number;
7 new_node->next = top;
8 top = new_node;
9 }

10 return top;
11 }

Warning! The line numbers are not a part of the source code. They
are introduced to simplify describing of the function’s code.

11 / 61

Stack — Implementation

Stack — Implementation
The push() Function

The push() function takes two arguments which are passed by its
parameters. The first one is the stack pointer and the second is
a number that will be stored in a new node of the stack. First,
the function allocates memory for the new node (lines no. 3 and
4). What happens next depends on the result of this operation.
If it fails then the value of the new_node pointer will be null and
the function will return the unchanged value of the top pointer.
Otherwise, the new_node pointer will store the address of the new
element. The number passed by the number parameter is assigned to
the number field of the new element (line no. 6). In the 7th line, the
address currently stored in the top pointer in assigned to the next
filed of the new node. Thus, the new node is linked to the rest of the
stack and becomes a new top of the stack. Therefore, its address is
assigned to the top pointer in the 8th line. After that the function
returns the address of a new top of the stack and terminates.

12 / 61

Stack — Implementation

Stack — Implementation
The push() Function

The push() function can be implemented in many ways. For exam-
ple, the stack pointer may be passed by a parameter of the pointer to
a pointer type, which is then modified in the function body. Similar
solution is discussed in more details in the pop() function descrip-
tion.
The next slides illustrate successful adding of a new node to a non-
empty stack which has two elements. Please note, that the next
field of the new node is initially marked in a red color, meaning that
it is an incorrect pointer (a wild pointer).

13 / 61

Stack — Implementation

Stack — Implementation
The push() Function

new_node number
next

top number
next

number
null

Before the 7th line of the push() function is performed.

14 / 61

Stack — Implementation

Stack — Implementation
The push() Function

new_node number
next

top number
next

number
null

Before the 8th line of the push() function is performed.

14 / 61

Stack — Implementation

Stack — Implementation
The push() Function

new_node number
next

top number
next

number
null

Before the 9th line of the push() function is performed.

14 / 61

Stack — Implementation

Stack — Implementation
The push() Function

Please note the value of the next field in the bottom node of the
stack. It is null, meaning that the node is the last element of the
stack. There are no other stack nodes behind it. Let’s check if the
push() function assures that the next field in the bottom node of
the stack always gets the null value. It turns out, that it happens
only when the function is given a stack pointer with the null value
when it is called for the first time. In such a case the null value
is assigned to the next field of the first and only element of the
stack. However, if in such a case a wild pointer is passed to the
function, then its value will be assigned to the next field. It is a
dangerous situation from the program point of view, because it will
be unable to locate the end of the stack. Thus, programmers should
always take care of passing an empty stack pointer to the push()
function when it is invoked to add the first node to the stack. This
is especially important when the stack pointer is a local variable.

15 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

The pop operation is implemented in the form of pop() function.
Similarly, as in the case of the push() function the working of the
pop() function should satisfy the following assertions:

1 Before the function is performed the stack pointer should point
to the top node of a stack, or be an empty pointer.

2 After the function is performed, the stack pointer should point
to the top element of the stack, which is one node shorter, or
be an empty pointer.

16 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

1 double pop(struct stack_node **top)
2 {
3 double result = 0.0;
4 if(*top) {
5 result = (*top)->number;
6 struct stack_node *temporary = (*top)->next;
7 free(*top);
8 *top = temporary;
9 }

10 return result;
11 }

17 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

The pop() function has only one parameter which is a pointer to a
pointer. By this parameter the address of the stack pointer is passed
to this function. Using it is necessary because the function needs
to modify the stack pointer and it is not possible to return its new
value, because the pop() function has to return the number stored
in the removed stack node. In this case the pointer to a pointer as
a parameter is the best option.

18 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

The pop() function has a local variable (result) of the double
type which initial value is set to 0.0. If the stack is empty then
the function will return such a value and terminate. The state of
the stack (empty or not) is verified in the 4th line of the function.
The *top condition is a shorter form of the *top!=NULL expression.
If it’s true the function assigns the number from the current top
node of the stack to the result variable (line no. 5) and stores
the address of a next node in the temporary pointer (line no. 6).
The address is taken from the next field of the stack current top
node. Then the top element is removed (line no. 7). Now, the stack
pointer has an incorrect value — it doesn’t point to the top of the
stack. To fix it, in the 8th line the value of temporary pointer is
assigned to the stack pointer. Next, the function returns the value
of the result variable and terminates.

19 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

Please observe, that the pop() function removes correctly also the
last (the bottom) node of the stack. Its next pointer field value is
null and such a value is assigned to the temporary pointer when
the 6th line of the function is performed on a stack with only one
node. After the 8th line is executed also the stack pointer gets such
a value. This is an expected result, since the stack should become
empty after its only node is removed.
The next slides shows the working of the pop() function when it re-
moves a top node from a stack that initially has three of them. Con-
trary to what the slide suggests, the content of the removed element
doesn’t vanish after the free() function is called, nor the pointer
that points to it becomes empty. Nonetheless, the node should not
be accessed any more. Also the pointer should not be used until a
new address is stored in it. The reasons for such restrictions were
explained in the first lecture.

20 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

*top number
next

temporary number
next

number
null

After the 6th line of the pop() function is performed.

21 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

*top number
next

temporary number
next

number
null

After the 7th line of the pop() function is performed.

21 / 61

Stack — Implementation

Stack — Implementation
The pop() Function

*top

temporary number
next

number
null

After the 8th line of the pop() function is performed.

21 / 61

Stack — Implementation

Stack — Implementation
The peek() Function — Optional

1 double peek(struct stack_node *top)
2 {
3 if(top)
4 return top->number;
5 else {
6 fprintf(stderr,"The stack is empty.\n");
7 return 0.0;
8 }
9 }

22 / 61

Stack — Implementation

Stack — Implementation
The peek() Function — Optional

The peek operation is optional. It doesn’t have to be defined in every
stack implementation. Nonetheless, it is presented in this lecture in
the form of peek() function. Its definition in relatively simple. The
stack pointer is passed to the function with the use of its parameter.
If it is not empty (the condition top is shorter form of the expression
top!=NULL), then the function returns the number stored in the top
node of the stack. Otherwise, it prints a message on the screen,
informing the user that the stack is empty and returns the same
value as the pop() function in the same case.

23 / 61

Stack — Implementation

Memory Leaks

The implementations of dynamical data structures are prone to serious
errors. Incorrectly linked elements of a stack or similar structure are one
of the examples. Let’s assume that some overzealous programmer decides
to zero out the top parameter at the beginning of the push() function.
Such a mistake results in the lack of connections between nodes of the
stack. Moreover, aside from the last node, non-other is pointed by any
pointer. These nodes cannot be deallocated. The areas of the heap that
are allocated to them are lost until the program exits. In the Computer
Science jargon such a mistake is called a memory leak. In the worst case it
can lead to exhaustion of the space in the heap. The first defence against
memory leaks is to avoid them by carefully analysing implementations of
all operations performed on the data structure. There exist also software
tools like debuggers and dedicated libraries that make detecting of such
errors easier. Unfortunately, they are not part of the C language stan-
dard, because their internal working depends on the used computer and
operating system.

24 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The stack is applied for evaluating arithmetic expressions in the Re-
versed Polish Notation (RPN) also called the postfix notation. It
was invented by an Australian computer scientist and philosopher
Charles Hamblin and it is based on the Polish Notation (PN) also
called the prefix notation proposed by a Polish mathematician and
philosopher Jan Łukasiewicz. Both notations do not require any
parentheses to define the precedence of binary operators in any pos-
sible expression. In the PN the operators precede the arguments
and in the RPN they follow the arguments. The next slide presents
several expressions in the traditional (infix) notation and in the cor-
responding RPN form.

25 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

2 + 2 Ñ 2 2 +
(5 − 2) ∗ (4 + 1) Ñ 5 2 − 4 1 + ∗
(3 + 2) ∗ 7 Ñ 3 2 + 7 ∗
3 + 2 ∗ 7 Ñ 2 7 ∗ 3 +

26 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

5

2

5

-

5

4

5

1

5

+

5

*

5

=

5

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

5

2

2

5

2

-

5

2

4

5

2

1

5

2

+

5

2

*

5

2

=

5

2

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

3

2

3

-

3

4

3

1

3

+

3

*

3

=

3

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

3

4

2

3

4

-

3

4

4

3

4

1

3

4

+

3

4

*

3

4

=

3

4

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

3

4

1

2

3

4

1

-

3

4

1

4

3

4

1

1

3

4

1

+

3

4

1

*

3

4

1

=

3

4

1

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

3

5

2

3

5

-

3

5

4

3

5

1

3

5

+

3

5

*

3

5

=

3

5

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

15

2

15

-

15

4

15

1

15

+

15

*

15

=

15

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

5

result=15

2

result=15

-

result=15

4

result=15

1

result=15

+

result=15

*

result=15

=

result=15

27 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

As it can be observed watching the animation from the previous
slide, the RPN expressions are read from the left to the right. If
a token is found that is a number, then it is added to the stack,
but if it is an operator, then its arguments are removed from the
stack (if the RPN expression is correct, then a proper number of
arguments is already stored on the stack), the operation is carried
out and its result is stored back on the stack. The example program
presented in this lecture evaluates RPN expressions meeting the
following conditions:

1 the RPN expressions consist of non-negative floating-point num-
bers and four operators: addition, multiplication, division and
subtraction,

2 the tokens in the RPN expression are separated by single spaces,
3 the = token terminates every RPN expression and informs the

program to get expression’s value from the stack,
4 the program assumes that the RPN expression is correct. 28 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The program that evaluates RPN expressions uses only two of the
stack operations, push and pop. Its code begins with three prepro-
cessor directives, that include the stdio.h, stdlib.h and string.h
header files. They are followed by the definition of the stack node
type and push() and pop() functions.

29 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

struct stack_node {
double number;
struct stack_node *next;

};

30 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

struct stack_node *push(struct stack_node *top, double number)
{

struct stack_node *new_node = (struct stack_node *)
malloc(sizeof(struct stack_node));

if (new_node) {
new_node->number = number;
new_node->next = top;
top = new_node;

}
return top;

}

31 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

double pop(struct stack_node **top)
{

double result = 0.0;
if (*top) {

result = (*top)->number;
struct stack_node *temporary = (*top)->next;
free(*top);
*top = temporary;

}
return result;

}

32 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

double evaluate(char *token)
{

static struct stack_node *top = 0;
double first_argument, second_argument;
switch (token[0]) {
case '+':

top = push(top, pop(&top) + pop(&top));
break;

case '*':
top = push(top, pop(&top) * pop(&top));
break;

case '-':
second_argument = pop(&top);
first_argument = pop(&top);
top = push(top, first_argument - second_argument);
break;

33 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

case '/':
second_argument = pop(&top);
first_argument = pop(&top);
top = push(top, first_argument/second_argument);
break;

case '=':
return pop(&top);

default:
top = push(top, atof(token));

}
return 0.0;

}

34 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The evaluate() function takes only one argument, which is a string
representing one token of the RPN expression. It also uses a stack,
which stack pointer is stored in a local variable called top and de-
clared with the use of the static keyword. This keyword assures
that the address stored in that pointer doesn’t disappear between in-
vocations of the evaluate() function. The function takes the first
character in the string representing the token, and then uses the
switch statement to recognize what it is. If it is one of the binary
operators (plus, minus, times or divide), it takes the arguments from
the stack, using the pop() function, performs the operation and
stores the result on the stack, using the push() function. Please
note, that in case of the division and subtraction the arguments
of the operations are first assigned to two local variables. This is
necessary because both operations are anti-commutative, and their
arguments on the stack are stored in reversed order.

35 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

If the token is the = symbol, then the function removes the only
node from the stack using the pop() function and returns the num-
ber received from this latter function, because it is the result of
the RPN expression evaluation. If the token is neither of the de-
scribed symbols, then it represents a floating-point number. Thus,
the evaluate() function converts it to a number using atof() and
stores it on the stack.
The evaluate() function works correctly only if it is given a valid
RPN expression to evaluate. The initial value of the stack pointer in
this function is 0 which is equivalent to null. The function returns
0 if it is given a token that is not the = symbol.

36 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

double parse(char expression[])
{

double result = 0.0;
char *token = strtok(expression, " ");
while (token) {

result = evaluate(token);
token = strtok(0, " ");

}
return result;

}

37 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

The parse() functions is responsible for splitting the string, rep-
resenting an RPN expression, that is passed by its parameter into
several substrings representing the tokens of the expression. The
delimiter character in this case is a single space. Each of the tokens
is passed then to the evaluate() function, in the while loop, for
recognition. The outcome is stored in the result variable. When
the loop stops the value of this variable is returned, because it is the
value of the RPN expression.
The operation performed together by the parse() and evaluate()
functions is called, in the Computer Science terminology, parsing.

38 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

int main(void)
{

char rpn_expression[201];

puts("Please enter the RPN expression:");
scanf("%200[^\n]s", rpn_expression);
double result = parse(rpn_expression);
printf("Result: %.3lf\n", result);
return 0;

}

39 / 61

Reverse Polish Notation

Stack — Applications
Evaluating RPN Expressions

In the main() function the program asks the user to enter an RPN
expression and then stores the string that represents it in the local
variable named rpn_expression. Then this string is passed to the
parse() function, which result is stored in the result variable and
displayed on the screen.

40 / 61

Queue

Queue

Like the stack, the queue (also referred to as fifo queue, a fifo
data structure or simply a fifo) can be implemented in a from of
dynamic data structures. In such a case it is a list of linked nodes,
where a new node is added at the end of the list (called a tail or
a rear) and the operation of removing a node is performed at the
beginning of the list (called a head or a front).
The implementation of a queue in the form of a dynamic data struc-
ture is explained using a program that stores in this data structure
the command-line arguments.

41 / 61

Queue

Queue

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<stdbool.h>
4 #include<string.h>
5

6 #define LENGTH 500
7

8 struct fifo_node {
9 char data[LENGTH];

10 struct fifo_node *next;
11 };
12

13 struct fifo_pointers {
14 struct fifo_node *head, *tail;
15 } fifo;

42 / 61

Queue

Queue
In the program are included four header files. The stdio.h is added
because of the pritnf() function which is used to display messages
on the screen. The functions necessary to dynamically allocate and
deallocate memory are declared in the stdlib.h. Some of the func-
tions in the program return a value of the bool type. That is why
the stdbool.h is included in the program. The program also uses
a function that operates on strings, so the string.h is added too.
The maximum length of the string (including the '\0' character)
that can be stored in a single node of the queue is defined by the
length constants. Its value is 500.
The type of the single node of the queue is defined as a structure with
two members (lines 8–11). One of them is an array of characters
(line no. 9) and the other is a pointer of the same type as the
structure (line no. 10). Please notice, the similarity between the
types of the single node for the stack and the queue. The pointer
field has the same purpose as in the stack — it is used to link the
nodes of the queue. 43 / 61

Queue

Queue

In order to make the implementation of the queue operations effi-
cient two pointers are needed: one for the head and one for the tail.
They can be declared separately, but it is more convenient to make
them members of a structure. In the program the structure is called
fifo and it is declared in the line no. 15, in the previous slide. The
type of the structure is defined in the lines 13–15 and it has two
fields that are pointers of the struct fifo_node * type.

44 / 61

Queue

Queue

1 void copy_string(char *destination, char *source)
2 {
3 strncpy(destination,source,LENGTH-1);
4 destination[LENGTH-1] = '\0';
5 }

45 / 61

Queue

Queue

The copy_string() function makes a copy of a source string in the
destination array of character in a safer way than the strcpy()
function does. It copies at most length-1 characters from the
source string and then terminates the string by adding the '\0'
character in the destination array, in case the source string wasn’t
terminated in such a way.
The function may truncate the original string. In case of the pro-
gram, that is described here, it is not an issue, but in other kind
of software it may be, so the function has to be applied carefully in
other programs.

46 / 61

Queue

Queue
The Enqueue Operation

The operation of adding a new node to the queue is called enqueue.
Its implementation has to satisfy the following assertions:

If the queue has at least one node, the operation adds a new
element at the back of it, and if the queue is empty the function
creates and adds its first node.
If the implementation fails to create a new node, then the queue
stays the same as it was.
If the operation of adding a new node is successful then the
queue length increases by one element.

47 / 61

Queue

Queue
The Enqueue Operation

1 bool enqueue(struct fifo_pointers *fifo, char *data)
2 {
3 struct fifo_node *new_node = (struct fifo_node *)
4 malloc(sizeof(struct fifo_node));
5 if(new_node) {
6 copy_string(new_node->data,data);
7 new_node->next = NULL;
8 if(fifo->head == NULL && fifo->tail == NULL) {
9 fifo->head = fifo->tail = new_node;

10 } else {
11 fifo->tail->next = new_node;
12 fifo->tail = new_node;
13 }
14 return true;
15 } else
16 return false;
17 }

48 / 61

Queue

Queue
The Enqueue Operation

The enqueue operation is implemented as a function of the same
name. The function takes two arguments that are passed by its pa-
rameters. The first one is the address of the queue pointer structure.
The second one is a pointer to the string that should be stored in the
new node of the queue. The return type of the enqueue() function
is bool.
The function first tries to allocate memory for the new node of the
queue (lines no. 3 and 4). In the 5th line it checks if the operation
has been successful. If not it returns false (line no. 16) and ex-
its. Otherwise, the function calls copy_string() to store the string
passed by the data parameter into the data field of the new node
(line no. 6) and initializes the next field with null. Then it needs
to recognize which of the two possible cases it should handle:

1 the node ought to be added at the end of the queue,
2 the node ought to be added to an empty queue.

49 / 61

Queue

Queue
The Enqueue Operation

To do so it checks the value of the queue pointers (line no. 8). If
the head and tail pointers are empty, than the first case should
be handled, and the enqueue() function assigns to both of them
the address of the new node (line no. 9). This operation is also
illustrated in the next slide.
In the second case (lines 11-12) the enqueue() function first stores
the address of the new node in next member of the last node (line
no. 11). This way it appends the new node to the queue. However,
now the tail pointer points to a wrong node — it should always
point to to last node in the queue. That is why in the 12th line the
enqueue() function also assigns to the pointer the address of the
new node. This operation is shown in the second next slide.
Please note, that in both cases the next field of the new node has to
be set to null, because this value indicates that it is the last node
in the queue. Also in both cases the function returns true after
successfully adding a new node to the queue. 50 / 61

Queue

Queue
The enqueue() Function — Adding Node To The Empty Queue

null

null

null

new_node

The queue before the line no. 9 of the enqueue() function is performed

51 / 61

Queue

Queue
The enqueue() Function — Adding Node To The Empty Queue

tail

head

null

new_node

The queue after the line no. 9 of the enqueue() function is performed

51 / 61

Queue

Queue
The enqueue() Function — Appending The New Element

head

null null

tail new_node

Before the line no. 11 of the enqueue() function is performed

52 / 61

Queue

Queue
The enqueue() Function — Appending The New Element

head

next null

tail new_node

After the line no. 11 of the enqueue() function is performed

52 / 61

Queue

Queue
The enqueue() Function — Appending The New Element

head

next null

tail new_node

After the line no. 12 of the enqueue() function is performed

52 / 61

Queue

Queue
The Dequeue Operation

The operation of removing a node from the queue is called dequeue.
It should meet the following assertions:

If the queue is empty then the state of its pointers should not
change after the operation is performed — both pointers have
to have the value of null.
If a node is removed from a queue that has only one element,
then both queue pointers must be set to null.
If a node is removed from a queue that has more than one
element, than the queue length is reduced by one node and the
pointers correctly point to the head and tail of the queue.

53 / 61

Queue

Queue
The Dequeue Operation

1 bool dequeue(struct fifo_pointers *fifo, char *data)
2 {
3 if(fifo->head) {
4 struct fifo_node *temporary = fifo->head->next;
5 copy_string(data,fifo->head->data);
6 free(fifo->head);
7 fifo->head = temporary;
8 if(temporary == NULL)
9 fifo->tail = NULL;

10 return true;
11 }
12 return false;
13 }

54 / 61

Queue

Queue
The Dequeue Operation

The dequeue operation is implemented as a function of the same
name. It takes two arguments. The first one is the address of the
queue pointers structure, that is passed by its first parameter. The
second is the address of a character array, passed by its second
parameter.
First the function checks if the head pointer, that should point to the
first node in the queue, is not empty (line no. 3). If so, it assigns the
address stored in the next field of the first node to a local pointer
named temporary (line no 4). This is the address of the second
node in the queue. Then the dequeue() function copies the string
from the data member of the first node, to the array which address
is passed by its second parameter (line no. 5). Next the function
deallocates the memory allocated for the queue first node (line no.
6). After that operation is performed, the head pointer is invalid,
because the first node no longer exists.

55 / 61

Queue

Queue
The Dequeue Operation

The address of the non-existing node in the head pointer has to be
replaced with the address stored in the temporary pointer (line no.
7). It is the address of previously the second node of the queue and
now the first node. However, it may happen that the enqueue()
function has removed the only node in the queue, and now it is
empty. That means that after the 7th line is performed, both the
head and temporary pointers are empty, but the tail pointer is
invalid. It points to a non-existent node. To find out if that is the
case, the dequeue() checks the temporary pointer (line no. 8), and
if it is empty, the function sets the tail pointer to null. Finally,
the dequeue() returns true informing that it successfully removed
a node from the queue. If the condition in the line no. 3 is not met,
then it means that the queue is empty and the function returns
false (line no. 12) because it is unable to remove a node from an
empty queue.

56 / 61

Queue

Queue

1 int main(int argc, char *argv[])
2 {
3 for(int i=0; i<argc; i++)
4 if(!enqueue(&fifo, argv[i]))
5 printf("Error adding the argument: %s to the queue!",
6 argv[i]);
7 while(fifo.head) {
8 char string[LENGTH];
9 if(dequeue(&fifo,string))

10 printf("Data from queue: %s\n", string);
11 }
12 return 0;
13 }

57 / 61

Queue

Queue

The main() function adds in the for loop command-line arguments
to the queue (lines 3–6), verifying in each iteration that the opera-
tion has been successfully completed (line no. 4). Then it retrieves
them from the queue in the while loop (lines 7–11) and displays on
the screen. Please note, that the path to the executable file of the
program is also added to the queue — it is pointed by the argv[0].
The while loop is performed as long as the head pointer is not
empty. Additionally, the function checks in the loop’s body if the
dequeue() returned true, before printing the string stored in the
string array.

58 / 61

Summary

Summary

Other implementations of the described data structures are possible.
Both the stack and the queue may be implemented in hardware or
software. It is also possible to build them on top of a statically or
dynamically allocated array. In that case the nodes of the stack or
queue are elements of the array, and instead of pointers the indices
are used.
Both data structures have many applications, in compilers, operat-
ing systems and other software. There is also an algorithm, invented
by Edsgar Dijkstra that allows the program to convert an infix ex-
pression to postfix notation. It is called the shunting-yard algorithm
and it also uses a stack. Unlike the algorithm for evaluating the
postfix expressions, the shunting-yard algorithm stores in this data
structure operators and parentheses instead of numbers.

59 / 61

The End

Questions

?

60 / 61

The End

The End

Thank You For Your Attention!

61 / 61

	Data Structures
	Stack — Introduction
	Stack — Implementation
	Reverse Polish Notation
	Queue
	Summary
	The End

