
Fundamentals of Programming 2
Recursion, Divide-And-Conquer

Arkadiusz Chrobot

Department of Information Systems

March 11, 2024

1 / 53



Outline

1 Recursion

2 Divide-And-Conquer

3 Pros and Cons of Recursion

4 Common Mistakes

5 Summary

2 / 53



Recursion

Recursion
Introduction

In the previous semester we have discussed how functions in pro-
grams are performed. A crucial part in this operation has a stack,
or more precisely, a call stack. It is an area in the program mem-
ory where data needed for performing a function are stored. The
data are organized in stack frames also called activation records.
Activation records are added to the call stack according to the lifo
principle. The stack frame stores a return address, local variables,
parameters, among other data. Using a stack for handling function
calls has interesting consequences. One of them is the possibility of
creating recursive subroutines, that in case of the C language are re-
cursive functions. A recursive function is a function that calls itself.
Such functions implement recursive algorithms. These algorithms
split the problem that they solve into finite number of subproblems
of smaller size until they reduce them to a cases that can be directly
solved. Then the algorithms combine the results to get the solution
of the initial problem. 3 / 53



Recursion

Recursion
Introduction

Let’s analyse how the recursion works and discover its associations
with the call stack, using as an example a recursive function that
calculates the factorial. The definition of the factorial of a natural
number n is as follows:

n! =
{

1 if n = 0 or n = 1
(n − 1)! · n for n > 1

It can be observed that the definition is recursive — for n > 1 the
factorial can be calculated if the result of factorial for an argument
less by 1 is already known. The definition also has two base cases,
i.e. for which the result is given directly. These cases are for n = 0
and n = 1. A definition of function which implementation is based
on the presented definition of factorial is in the next slide.
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Recursion

Recursion
Introduction — Factorial

1 unsigned long int factorial(unsigned char n)
2 {
3 if(n==0||n==1)
4 return 1;
5 else
6 return factorial(n-1)*n;
7 }
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Recursion

Recursion
Introduction — Factorial

The function correctly calculates the factorial for a value of the
parameter n < 65. Above that value the overflow of function result,
which is of the unsigned long int type, occurs. Let’s analyse
how the function is performed for n=3. When it is invoked a stack
frame is created for this function instance. The function checks
the condition, which is false, so it tries to evaluate the expression
factorial(2)*3. To complete the task it calls itself but for n=2.
Just like in the previous call a stack frame is created for the new
instance and the function check the condition in the line no. 3,
which also is false. Then it tries to evaluate the factorial(1)*2
expression. To this end it calls itself for n=1. Like previously a stack
frame is created for this function call, but this time the condition
in the third line is true and the instance of the function exits and
returns the value of 1.
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Recursion

Recursion
Introduction — Factorial

After the function exits and returns the value of factorial for n=1, the
control flow goes back to the instance of the function for n=2. This
time the function can evaluate the factorial(1)*2 expression, by
replacing the first term of the expression with the value of 1. After
the result (2) is calculated the instance of the function returns it and
exits. The control flow goes back to the instance of the function for
n=3. This time it also can evaluate the factorial(2)*3 expression
by replacing the first term with the value of 2. Finally, the function
exits and returns 6 (the value of factorial for n=3). Any time each
instance of the function exits, a stack frame is removed from the
call stack. The content of the stack is depicted schematically in the
next slide.
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Introduction — Factorial

A stack
frame for

factorial(3)

The function call for n=3

8 / 53



Recursion

Recursion
Introduction — Factorial

A stack
frame for

factorial(3)

A stack
frame for

factorial(2)

A recursive call: factorial(2)*3

8 / 53



Recursion

Recursion
Introduction — Factorial

A stack
frame for

factorial(3)

A stack
frame for

factorial(2)

A stack
frame for

factorial(1)

A recursive call: factorial(1)*2*3
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A stack
frame for

factorial(3)

A stack
frame for

factorial(2)

The factorial(1) call returns result an exits.
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A stack
frame for

factorial(3)

After factorial(2) exits.
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Introduction — Factorial

After factorial(3) exits.
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Recursion
Introduction — Factorial

Usually the performance of recursive functions is illustrated not by
depicting the state of call stack, but by drawing a function call
tree which is also, in this case, a recursion tree. In case of the
factorial() function for n=3 the recursion tree is very simple (the
mathematicians would say that it is a degenerate tree).

factorial(2)*3

factorial(1)*2
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Divide-And-Conquer

The Divide-And-Conquer Algorithm

The Divide-And-Conquer is a method of designing recursive algo-
rithms. It consists of three steps:

Divide-And-Conquer
1 Divide

Divide the problem into subproblems of the same type, but of
a smaller size.

2 Conquer
Solve the subproblems recursively, unless their size is so small,
that they can be tackled with using direct methods.

3 Merge
Combine the solutions of subproblems to get the solution of
the original problem.
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

The Divide-And-Conquer method can be applied to solve the Tower
of Hanoi problem, which has been formulated in the year 1883 by
a French mathematician Édouard Lucas. In the problem a tower is
given that consists of discs of different diameters located on a single
peg, and so constructed that smaller discs lie on bigger discs. Also
a two additional empty pegs are given. The goal of the problem
is to move the tower to one of the two additional pegs, using the
remaining one in the process, if necessary, but during each step only
one disk can be moved and never a bigger disk can be put on a top
of a smaller disk. An animation in the next slide shows the solution
of the problem for a tower consisting of three discs.
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

Actually, a two problems of Tower of Hanoi will be solved in the lec-
ture. The first one has been formulated in the book “Concrete Math-
ematics” by D.E.Knuth, R.L.Graham and O.Patashnik (Addison-
Wesley Publishing, 1989):

The First Problem of Tower of Hanoi
Knowing how many discs the tower has, calculate the minimal
number of steps required to move it to the destination peg.
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

The problem can be solved by applying the Divide-And-Conquer
method. According to its description, in the first step a partition
of the problem into subproblem of smaller size has to be found. In
the case of Tower of Hanoi the task is pretty simple — the tower
consists of discrete discs, so the subproblem of directly smaller size,
than the problem of moving n discs, is to move n − 1 discs. In the
second step the strategy of recursively solving the subproblems has
to be defined. Moving the n discs is straightforward, assuming that
the method for moving n − 1 disks is known:

1 Move n − 1 discs from the source peg to the helper peg.
2 Move the nth disc from the source peg to the destination peg.
3 Move n − 1 discs from the helper peg to the destination peg.
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

Let’s denote the minimal number of steps required to move the
Tower of Hanoi of n disks by Tn, and by Tn−1 the minimal number
of necessary steps to move the Tower of Hanoi of n − 1 disks. From
the previous slide it can be derived that Tn = 2 · Tn−1 + 1. This
relation for towers of n and n − 1 disks is also true for towers of
n −1 and n −2 disks, i.e. knowing how many steps it takes to move
the tower of n − 2 disks, it is possible to calculate how many steps
it takes to move the tower of n − 1 disks. Now, the base case has
to be defined. It can be assumed that it is a problem of moving an
empty tower, i.e. which has n = 0 disks. In that case no steps are
required to move the tower, which can be denoted as T0 = 0. The
Merge Step is quite simple in this problem: having a solution for 0
disks the solution for 1 disk can be found, then for 2 disks and so on.
The next slide contains a definition of a function that implements
this algorithm.
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

unsigned long int find_hanoi_steps(unsigned char discs)
{

if(discs==0)
return 0;

else
return 2*find_hanoi_steps(discs-1)+1;

}
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

The number of discs of Tower of Hanoi is passed through the discs
parameter to the function. Please observe, that using the Divide-
And-Conquer method makes it possible to write a function that
calculates the factorial. It means that the method may be applied
to a variety of problems. The next slide shows the recursion tree
for the find_hanoi_steps() function invoked for a Tower of Hanoi
with 4 disks.
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Divide-And-Conquer
Tower of Hanoi

find_hanoi_steps(4)

2*find_hanoi_steps(3)+1

2*find_hanoi_steps(2)+1

2*find_hanoi_steps(1)+1

2*find_hanoi_steps(0)+1

0
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Tower of Hanoi
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Tower of Hanoi

find_hanoi_steps(4)
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1
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Divide-And-Conquer
Tower of Hanoi
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Tower of Hanoi

find_hanoi_steps(4)

2*7+1

7

3

1

0
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find_hanoi_steps(4)=15

15

7

3

1

0
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

Let’s now try to find solution for the second problem of Tower of
Hanoi which is defined as follows:
Second Problem of Tower of Hanoi
Find an algorithm for moving the Tower of Hanoi with minimal
number of steps.

It turns out, that the same way of reasoning that has been applied
for solving the first problem of Tower of Hanoi can also be used
for finding the solution for the second one. Like in the previous
problem, moving an empty tower requires no action, so 0 steps has
to be made. To move a tower of n discs, first a tower of n − 1 disc
has to be moved from the source peg to the helper peg. Next, the
nth disc has to be moved form the source peg to the destination peg,
and finally the tower of n − 1 discs has to be moved from the helper
peg to the destination peg. The next slide contains a definition of a
function that implements this algorithm. 19 / 53



Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

1 void hanoi_movements(unsigned int discs,
2 unsigned char source,
3 unsigned char helper,
4 unsigned char destination)
5 {
6 if(discs) {
7 hanoi_movements(discs-1,source,destination,helper);
8 printf("Move the disc no. %u from the peg no. %u\
9 to the peg no. %u\n",discs,source,destination);

10 hanoi_movements(discs-1,helper,source,destination);
11 }
12 }
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Divide-And-Conquer

Divide-And-Conquer
Tower of Hanoi

By the first parameter the number of Tower of Hanoi discs is passed
to the function. By the next three parameters the number of the
source peg, the helper peg and the destination peg are passed. In
the line no. 6 the function checks if the number of discs is greater
than zero. If the condition is satisfied then it starts informing user
which disc (by displaying its number) has to be moved from which
peg to which peg (also by displaying their numbers) in a given step.
According to the presented analysis, first the function has to move
the smaller tower from the source peg to the helper peg, which is
in this case a destination peg. Hence, the first recursive invocation
of the function (line no. 7). Next, the function displays a message
informing the user to move the nth disc (lines no. 8 and 9) and
finally it calls itself recursively (line no 10) to move n − 1 discs
from the helper peg (which in this case is the source peg) to the
destination peg.
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Pros and Cons of Recursion

Pros and Cons of Recursion

The biggest advantage of using the recursion is that it makes the
definitions of functions brief. Let’s check it using two examples. The
first example is a function that converts decimal numbers greater
than 0 into binary numbers. The second example is the Quicksort
algorithm and its implementation in a form of two functions.
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Pros and Cons of Recursion
Conversion from Decimal to Binary

At the first sight the algorithm of converting a decimal number into
a binary number seems not to be recursive. It consists of finding the
reminder after division of a number by two and the integer result
of dividing the number by two, until the latter operation yields 0.
Then the reminders has to be ordered from the last to the first. The
last sentence suggests using a stack, which means that applying a
recursion would simplify the solution — the recursive functions use
the call stack. Please observe, that the result of integer division
becomes the input data for the next step of the algorithm, so it
may be expressed in a recursive form. The base case is when the
integer division yields zero. The next slide presents a definition of a
function which converts a decimal number into binary and displays
the result on the screen.
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Pros and Cons of Recursion

Pros and Cons of Recursion
Conversion from Decimal to Binary

1 void convert_to_binary(unsigned long int number)
2 {
3 if(number) {
4 convert_to_binary(number/2);
5 printf("%lu",number%2);
6 }
7 }

24 / 53



Pros and Cons of Recursion

Pros and Cons of Recursion
Conversion from Decimal to Binary

The presented function check if the number passed to it is greater
then zero. If so, it calls itself recursively for this number divided
by two. This sequence of calls ends when the value of the number
becomes zero for some invocation. Then returns from the recursive
calls take place and in each of them the printf() function is invoked
which displays the reminder after division of the number passed by
the parameter by two. The algorithm that the function implements
may be created with the use of Divide-And-Conquer method. The
base case is when the integer division yields zero. The partition
of the problem is made each time the number is divided by two.
The merging takes place when the function prints the reminders.
The function doesn’t convert the 0 number. It could be changed by
placing only the recursive invocation in the conditional statement,
but after such a modification the function will always display the
binary numbers that start with a leading zero (as a value of the
most significant bit). 25 / 53
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Pros and Cons of Recursion
Quicksort

The Quicksort algorithm was developed by a British computer sci-
entist C.A.R. Hoare and it is one of the most efficient sorting algo-
rithms. Although its worst-case time complexity is Θ(n2), where n
is the number of element, its average and best-case time complexity
is Θ(n · log2(n)). Constants hidden by the asymptotic notation are
small. The Quicksort is an in-place sorting algorithm, but its space
complexity is O(n). It is a consequence of the fact, that it is a re-
cursive algorithm implemented in a form of a recursive subroutine,
hence it intensively uses the call stack. It can be implemented as
an iterative subroutine, but this proves to be a challenging task and
the iterative implementation isn’t more effective than the recursive
one. The Quicksort performs unstable sorting.
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Pros and Cons of Recursion

Quicksort and “Divide and Conquer”

The Quicksort algorithm can be described using the “Divide and
Conquer” method:

Divide: The A[p . . . r] array is partitioned (values of its ele-
ments are swapped) into two nonempty parts A[p . . . q]
and A[q +1 . . . r], such that a value of each element in
A[p . . . q] is not greater than the value of any element
in A[q + 1 . . . r]. The q index is determined by a par-
titioning subroutine.

Conquer: The two parts: A[p . . . q] and A[q + 1 . . . r] are sorted
by applying the Quicksort algorithm recursively.

Merge: Since the Quicksort is an in-place algorithm, no addi-
tional steps are required to merge the sorted parts: the
whole A[p . . . r] array is already sorted.
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Pros and Cons of Recursion
Quicksort — The quicksort() Function

1 void quicksort(int_array_type array, int low, int high)
2 {
3 if(low<high) {
4 int partition_index = partition(array,low,high);
5 quicksort(array, low, partition_index);
6 quicksort(array, partition_index+1, high);
7 }
8 }

28 / 53



Pros and Cons of Recursion

Pros and Cons of Recursion
Quicksort — The quicksort() Function

The quicksort() function corresponds to the Conquer step in the
description presented in the previous slide. It doesn’t return any
value, but has three parameters. The first one is used for passing
the array. By the second and third parameters are passed the indices
that specify the area of the array that has to be sorted. Initially,
when the quicksort() function is called, for example, in the main()
function, this area covers the whole array. Inside the body of the
quicksort() function the first index (low) is compared with the
last index (high). If the former is less than the latter then there is
a part (area) of the array that still needs to be sorted. Otherwise
the function exits. If the condition in the 3rd line is satisfied then
the partition() function is invoked that reorders the given part of
the array and determines the point where this area is partitioned in
two smaller parts. Next, the quicksort() function is called twice,
for each of the new parts separately.
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Pros and Cons of Recursion
Quicksort — The quicksort() Function

The first part is sorted by an instance of the quicksort() function
that deals with elements of the array that have indices raging from
the first index (low) to the partition index (partition_index), in-
cluding both of them. The second part consists of elements with
indices raging from the partition index (excluding) to the last in-
dex (high), including. The partition() function is defined in the
program before the quicksort() function, but in the slides it is
described after the latter.
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Pros and Cons of Recursion
Quicksort — The partition() Function

1 int partition(int_array_type array, int low, int high)
2 {
3 int pivot = array[low];
4 int i = low-1, j = high+1;
5

6 while(i<j) {
7 while(array[--j]>pivot)
8 ;
9 while(array[++i]<pivot)

10 ;
11 if(i<j)
12 swap(&array[i],&array[j]);
13 }
14 return j;
15 }

31 / 53



Pros and Cons of Recursion

Pros and Cons of Recursion
Quicksort — The partition() Function

The partition() function corresponds to the Divide step in the
description that uses the “Divide and Conquer” method. It has
three parameters, which have the same meaning as the parameters
of the quicksort() function. The partition() function returns a
number, which is an index that specifies the partition point of the
currently sorted part of the array. In the 3rd line of the function is
declared and initialised a variable named pivot, that stores so-called
pivot value which specifies how the part of the array is reordered.
In the function, the value of the first element of the sorted part of
the array is assumed as the pivot value (line no. 3). In the 4th line
of the function are declared and initialised two variables that are
used for indexing the sorted part of the array from the beginning
(the i variable) and from the end (the j variable). Please note, that
initially both indices specify elements that are outside the sorted
part of the array.
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Pros and Cons of Recursion
Quicksort — Funkcja partition()

The outer while loop (6th line) is repeated as long as the the value
of the i index is smaller than the value of the j index, or in other
words, until the indices “meet” or “miss” each other. Inside the loop
are performed two other while loops. The first one (lines no. 7 and
8) traverses the given part of an array starting from the end toward
the beginning and searches for an element that has a value equal
to or smaller than the pivot value. The second internal loop (lines
no. 9 and 10) traverses the same part of the array but from the be-
ginning to the end and searches for an element with a value greater
than or equal to the pivot value. Please note, how these loops are
implemented. The searching takes place inside the condition state-
ment of the loops. The pre-increment and pre-decrement operators
are applied to the indices to avoid accessing elements of the array
that are outside of the sorted part or even accessing elements outside
the array itself.
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Pros and Cons of Recursion
Quicksort — The partition() Function

After both internal loops stop, the function performs the conditional
statement (11th line) to check whether the i index is smaller than
the j index. If so, then the order of the values in the elements
associated with these indices is incorrect, and they have to switch
the places. If not, then the outer loop stops and the j index specifies
a partition point for the sorted part of the array, hence the index is
returned by the function (14th line).
In the next slide is a call tree that illustrates how the quicksort()
function sorts an array that has seven elements that store natu-
ral numbers. In the upper part of the tree, it is marked which
actions are performed by the quicksort() function and which by
the partition() function. In the bottom part of the tree, no such
description is given, to keep the drawing more legible.
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Quicksort — Call Tree
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Pros and Cons of Recursion
Effectiveness of the Recursion

Let’s consider the effectiveness of the recursion. Each recursive call
involves creating a stack frame. It takes time and uses some free
space in the memory, so it degrades the effectiveness of recursive
functions. The more recursive calls a function has the less efficient
it becomes, comparing to its iterative equivalent. There is one more
reason for refraining from using the recursion in every possible func-
tion. It is explained with the use of Fibonacci Numbers problem.
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Pros and Cons of Recursion
Fibonacci Sequence

The Fibonacci Sequence has been discovered by a medieval Italian
mathematician Leonardo Fibonacci, who tried to use it for describ-
ing the grow of a population of rabbits. It occurred to be insuffi-
cient for this purpose, but it can be applied to many other practical
problems. Even some concepts from art can be described using this
sequence. The Fibonacci Sequence is defined as follows:

fibonacci(n) =






0 if n = 0
1 if n = 1
fibonacci(n − 2) + fibonacci(n − 1) for n ≥ 2

The n in the formula is a natural number and it defines the place of a
given Fibonacci Number in the sequence. All numbers that belong to
the Fibonacci Sequence are natural numbers. The definition of the
sequence encourages to implement a function that finds successive
Fibonacci Numbers in a recursive fashion. A definition of such a
function in presented in the next slide. 37 / 53
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Pros and Cons of Recursion
Fibonacci Sequence

1 unsigned int get_fibonacci_number(unsigned char order)
2 {
3 if(order==0)
4 return 0;
5 if(order==1)
6 return 1;
7 return get_fibonacci_number(order-1)+get_fibonacci_number(order-2);
8 }
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Pros and Cons of Recursion
Fibonacci Sequence

The definition of the function is brief and understandable because it
mirrors the definition of the sequence. The analysis of the function
behaviour is a little more difficult since it calls itself twice in the 7th
line. In that case it could be assumed that expressions are evaluated
from the left to the right side, so the “left” invocation is performed
as first, and only after it exits the “right” is performed. After the
latter exits the total value of the expression can be calculated. Let’s
create a recursion tree for the function when it is invoked with the
order parameter equal 4. For the sake of simplicity the name of the
function in the tree is shortened to just one letter — f.

39 / 53



Pros and Cons of Recursion

Pros and Cons of Recursion
Fibonacci Sequence
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Pros and Cons of Recursion
Fibonacci Sequence

It can be observed, by analysing the recursion tree, that a lot of
the recursive calls calculate the same value (they are marked in red
color in the tree). This influences the effectiveness measured as a
time of performance and the required memory. Finding the first 45
Fibonacci Numbers with the use of the function takes a few second,
even with the use of a powerful computer.
The question arises, if a more efficient version of the function can
be created, that doesn’t perform the redundant calculations. The
answer is positive. According to the Fibonacci Sequence definition,
the function needs only to remember the two last Fibonacci Numbers
to calculate the next one. Moreover it doesn’t have to be recursive,
it can be an iterative function. The definition of such a function is
presented in the next slide.
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Pros and Cons of Recursion
Fibonacci Sequence — Iterative Version

unsigned int get_fibonacci_number(unsigned char order)
{

unsigned int current = 0, next = 1, result = 0;
unsigned int i;
for(i=0;i<order;i++) {

result = current + next;
current = next;
next = result;

}
return current;

}
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Pros and Cons of Recursion
Fibonacci Sequence

The definition of the function is not as legible as the definition of
its recursive version, but still pretty understandable. The current
variable stores the result of the currently calculated Fibonacci Num-
ber and the next variable the value of the next Fibonacci Number.
To calculate another Fibonacci Number these two values are added.
The result is stored in the result variable. Then the value stored
in next variable replaces the one stored in the current variable,
and the value stored in the result variable replaces the one stored
in the next variable. These calculations are preformed in the for
loop which repeats them as many times as it is defined by the posi-
tion in the sequence of the number to be calculated. The loop also
calculates a redundant Fibonacci Number, but only one. It’s the
number that follows in the sequence the one that is calculated. Cal-
culating the initial 45 Fibonacci Numbers with this function, using
the same computer as previously takes a lot less time. Additionally,
the function requires less memory while running. 43 / 53
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Pros and Cons of Recursion
Fibonacci Sequence

It can be proved, using the computational complexity theory, that
the algorithm applied by the recursive function, which calculates
the Fibonacci Number, is an exponential-time algorithm. For the
forth Fibonacci Number it creates a call tree with four levels. For
the third Fibonacci Number it creates a call tree of three levels.
Because each node of the tree has at most two successors then the
total number of nodes in the tree is 2order, where the order is
the position in the Fibonacci Sequence of the calculated Fibonacci
Number. Additionally, the bigger the call tree, the more it contains
instances1 of the function that calculate redundant values. The
iterative version utilises a linear-time algorithm, thus its running
time is much shorter, and it uses less memory than the recursive
version.

1A function instance is an invocation of the function with a specific argument.
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Pros and Cons of Recursion
Binomial Coefficients

Calculating the binomial coefficients, which are commonly used in
combinatorics, requires applying a complicated formula. However,
the operation has some properties that makes it possible to calculate
binomial coefficients recursively:

(
n
k

)
=






1 for k = 0 or k = n
n for k = 1(n−1

k−1

)
+

(n−1
k

)
in other cases

The next slides contains a function definition that implements this
formula, similarly like the recursive function that calculated Fi-
bonacci Numbers applied the Fibonacci Sequence definition.
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Pros and Cons of Recursion
Binomial Coefficients

unsigned int get_binomial_coefficients(unsigned char n, unsigned char k)
{

if(k==0||k==n)
return 1;

if(k==1)
return n;

return get_binomial_coefficients(n-1,k-1)+get_binomial_coefficients(n-1,k);
}
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Pros and Cons of Recursion
Binomial Coefficients

Using the recursion is not the most effective way of calculating the
binomial coefficients, just like applying it for calculating Fibonacci
Numbers. Aside from recursive calls that calculate redundant val-
ues, in the case of the function presented in the previous slide, a
risk of overflow of the unsigned int type values arises. This error
leads to incorrect results. However, creating an iterative equivalent
for the function is not as easy as in the case of Fibonacci Numbers.
The iterative function requires applying of two-dimensional array
and two loops, nested one in the other.
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Common Mistakes
Using the recursion is prone to many mistakes. The most common
category of such mistakes are incorrectly defined conditions for ter-
minating the recursion. Such mistakes can be of mathematical or
computing science nature. In the first case the base cases and the
problem partitioning operation are incorrectly defined and as a re-
sult the condition for stopping the recursion is never met. In the
second case the data types of variables may be chosen incorrectly
or the statements used in the function body may not behave as in-
tended by the programmer. Wrongly chosen data types can cause
overflows and thus the function may never terminate. Similarly,
using wrong statements, may cause the same troubles. Especially
“treacherous” are the increment and decrement operators. Using
them in arguments for recursive calls should be avoided. Sometimes
the cause of an error may be misinterpretation of the function code
by the compiler. That’s why paying an attention to warnings issued
by this program during the compilation process is important.
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Common Mistakes

The recursion has a lot in common with the mathematical induction.
The correctness of recursive algorithms may be proven with the
use of this technique. The mistakes of computing science nature
can be dealt with by using such tools as debuggers and by paying
attention to details while writing recursive functions. In the ideal
world errors in recursive functions would result in infinite recursive
calls of these functions. In the real world such incorrectly written
recursive functions result in a stack overflow, which means that the
function has generated so many stack frames that there is no space
left on the stack for a new one. This exception can be also caused
by correctly written recursive functions, but run in environments in
which they have only a stack of a small size to their disposal. In that
case replacing the arguments passed by a value by the arguments
passed by a pointer or by a constant is worth considering.
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Summary

Summary

The Divide-And-Conquer method is a powerful tool for creating
recursive algorithms. The recursion makes it possible to implement
them in a compact form. However, as it is demonstrated in the
lecture, using recursive functions is not always efficient. Sometimes
it is better to spend some time analysing the problem in order to
find an iterative or even simpler implementation of the solution.
For example by reading the book “Concrete Mathematics”, a simple
solution of the first problem of Tower of Hanoi can be found. The
recursive equations describing the number of minimal steps required
to move the tower can be simplified to Tn = 2n − 1, where n is
the number of discs in the tower. That means that even a loop is
not necessary to calculate the result. A function that applies such
a formula is sufficient. Moreover, it is a function that utilises a
constant-time algorithm.
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Summary

Summary

Although recursive functions have drawbacks, learning this tech-
nique is important to any decent programmer. There are recursive
algorithms which cannot be easily implemented in an iterative form.
Such an implementation would require to explicitly implement a
stack as, for example, a dynamically allocated data structure, which
is a more tedious work than just simply writing a recursive function.
Some of the recursive functions can be automatically converted to
an iterative form by the compiler. Finally, the last argument for
using the recursion is that there are some efficient recursive algo-
rithms that are easily implemented in a form of recursive functions.
The iterative version of these functions are more complicated and
at most as efficient as the recursive ones. An example of such an
algorithm is QuickSort which has been described in this lecture.
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The End

Questions

?
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The End

The End

Thank You For Your Attention!
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