
Fundamentals of Programming 2
Graphs, DFS And BFS Algorithms

Arkadiusz Chrobot

Department of Information Systems

May 20, 2024

1 / 53

Outline

Introduction

Graph Theory

Graphs as Data Structures

Depth-First Search Algorithm

Breadth-First Search Algorithm

Implementation

Summary

2 / 53

Introduction

Graphs are data structures that are used for representing relationships
between data items. Although the basic idea behind graphs is quite simple,
they are applied for solving many problems in Computer Science. These
data structures are based on mathematical concepts originally discovered
by the Swiss mathematician Leonhard Euler, and developed by others.
Some of these ideas are discussed in the following slides. Unfortunately,
the terminology in graph theory is not standardized, so some textbooks
may have different definitions of concepts presented here.

3 / 53

Graph Definitions
Graph Definitions

Directed Graph Definition
A directed graph or a digraph G is defined as a pair (V, E), where V is a
finite set, whose elements are called vertices or nodes of the graph G, E
is a binary relation on V and E ⊆ V × V . The set V is called the set of
vertices. The set E is the set of edges of the graph G. Its elements are
called edges.

Undirected Graph Definition
An undirected graph is a graph whose E set consists of unordered pairs
of vertices. It means that an edge is a set {u, v} where u, v ∈ V and
u 6= v. The edge is denoted as (u, v). The pairs (u, v) and (v, u) specify
the same edge. There are no loops (edges that join a vertex to itself) in
the undirected graphs.

4 / 53

Notes

Notes

Notes

Notes

Graph Examples

0 1

2 3

(a) A directed graph

0 1

2 3

(b) An undirected graph

Examples of graphs

5 / 53

Edges And Neighbours

Edge Types
In the directed graph G = (V, E) the edge (u, v) is an outgoing edge for
the vertex u and an incoming edge for the vertex v. In the undirected
graph the edge (u, v) is called incident to vertices u and v. It joins u and
v.

Neighbours
A vertex v is an adjacent vertex to the vertex u (it is a neighbour of the
vertex u) in a graph G = (V, E) if these vertices are connected by an
edge (v, u). In a directed graph the adjacency relation doesn’t have to be
symmetric.

6 / 53

Vertex Degree

The degree of a vertex in an undirected graph is the number of edges
incident to the vertex. In a directed graph the out-degree of a vertex
is the number of its outgoing edges and the in-degree of a vertex is the
number of its incoming edges. In a directed graph the degree of a vertex
is a sum of its in-degree and out-degree.

7 / 53

Path And Cycle

Path Definition
A path (route) of the length k from a vertex u to a vertex u′ in a graph G =
(V, E) is a sequence 〈v0, v1, v2, . . . , vk〉 of vertices such that u = v0, u′ = vk
and (vi−1, vi) ∈ E for i = 1, 2, . . . , k. The path length is the number of
the edges in the path. The path contains vertices v0, v1, v2, . . . , vk and
edges (v0, v1), (v1, v2), . . . , (vk−1, vk). If there is a path from a vertex u to
a vertex u′, then the u′ vertex is reachable from the u vertex via the path
p. A path is called a simple path if all vertices in the path are different.
Cycle Definition
A path 〈v0, v1, v2, . . . , vk〉 forms a cycle if v0 = vk. A cycle is a simple
cycle if all of its vertices are different. A loop in a directed graph is a cycle
of the length 1. A digraph that has no loops or parallel edges (appearing
more then once) is called a simple graph. A graph that has no cycles is
called an acyclic graph.

8 / 53

Notes

Notes

Notes

Notes

Connectivity

An undirected graph is connected if there is a path between any two ver-
tices of the graph. A digraph is strongly connected if any two vertices in
the graph are reachable from each other.

9 / 53

Dense And Sparse Graphs

An undirected graph is a dense graph if every pair of its vertices is con-
nected by an edge. The number of edges in such a graph is

(n
2

)
, where

n is the number of vertices in the graph. A graph that has only a small
fraction of the number of edges, compared to a dense graph, is called a
sparse graph.

10 / 53

Graphs as Data Structures

There are two basic ways of representing graphs in software: the adjacency
matrix and the adjacency list. The adjacency list can be implemented as
a list of lists or as an array of pointers to lists (an array of lists, for
short). The adjacency matrix is a statically or dynamically allocated two-
dimensional array. The rows and columns in such a matrix represent the
vertices of a graph. If two vertices are connected by an edge, then the
adjacency matrix item located at the intersection of the column and the
row associated with those vertices is set to 1, otherwise it is set to 0. The
next slides present directed and undirected graphs and adjacency matrices
and adjacency lists that represent them.

11 / 53

Representations of Undirected Graph

0 1

2

34

0 1 2 3 4

0 0 1 0 0 1
1 1 0 1 1 1
2 0 1 0 1 0
3 0 1 1 0 1
4 1 1 0 1 0

/4 0 1 3

/3 1 2 4

/2 1 3

/1 0 2 3 4

/0 1 4

12 / 53

Notes

Notes

Notes

Notes

Representations of Undirected Graph

On the left side of the previous slide is an undirected graph. It is followed
by its adjacency matrix and then by its adjacency list in a form of an
array of pointers to lists. The characters / inside nodes of the adjacency
list represents the null value. Please observe, that the adjacency matrix
is symmetrical along its main diagonal. Thus, A = AT , where A is the
adjacency matrix. It means that, some space in the ram can be saved by
storing only items of either the upper or the lower triangular matrix.

13 / 53

Representations of Directed Graph

0 1 2

3 4 5

0 1 2 3 4 5

0 0 1 0 1 0 0
1 0 0 0 0 1 0
2 0 0 0 0 1 1
3 0 1 0 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 0 1

/5 5

/4 3

/3 1

/2 4 5

/1 4

/0 1 3

14 / 53

Representations of Directed Graph

Similarly, as in the case of the undirected graph, in the previous slide are
shown (respectively, from left to right): a directed graph, its adjacency
matrix and its adjacency list. The adjacency matrix is still a square matrix,
but it isn’t symmetrical1. Also, please note, that the graph has an edge
that is a loop. In the adjacency matrix the loop is represented by the item
located at the intersection of the sixth row and the sixth column, whose
value is 1.

1For some directed graphs it may be, but usually it isn’t.
15 / 53

Representations of Graphs
Summary

Statistically, the adjacency list is the most frequently used representation
of graphs in Computer Science. It’s implemented either as a list of lists
or as an array of lists. Only the second implementation is discussed here.
Each element of such an array represents one of the graph’s vertices and
points to the list of its neighbours i.e. adjacent vertices. The order of
neighbours in the list has no meaning. The number of vertices in all these
lists for a directed graph is |E| and for an undirected graph is 2 · |E|, where
|E| is the cardinality of the set of edges. Thus, the space complexity of the
adjacency list is O(|V |+ |E|), while the space complexity of the adjacency
matrix is Θ(|V |2). Both representations can be used for describing either
weighted or unweighted graphs. In the latter case the space required for
storing the matrix can be saved by using a bitwise matrix, which stores
the values of its items in single bits. However, the operations on such a
matrix are more time-consuming than on a regular matrix.

16 / 53

Notes

Notes

Notes

Notes

Representations of Graphs
Summary

The adjacency matrices are more suitable for problems where the exis-
tence of an edge had to be verified, or an edge has to be added or deleted
in a graph with a fixed number of vertices. On the other hand the ad-
jacency lists are more useful for traversing the graph (most of the graph
algorithms perform such an operation) or finding the degree of vertices.
Also, they are better than the adjacency matrices in representing small
or sparse graphs. Adjacency matrices are a better choice for representing
dense graphs. Both representations are interchangeable, i.e. the adjacency
matrix can be converted into the adjacency list and the other way.

17 / 53

Depth-First Search Algorithm

There are two basic graph traversal algorithms, the Depth-First Search
(dfs) and Breadth-First Search (bfs). The dfs begins traversing a graph
with a given starting vertex. It discovers the vertex’s first unvisited neigh-
bour, marks the current vertex as visited and explores its neighbour. The
dfs repeats these steps until it finds a vertex that either has no neighbours
or all its neighbours have already been visited. In that case the dfs back-
tracks to the previous vertex and checks if there are some still unvisited
neighbours left. If so, it explores the first of them, otherwise it backtracks
further. Eventually, the dfs will visit that way all vertices in the graph.
The outcome of this algorithm is a sequence of visited vertices.
The dfs is a generalisation of tree pre-order traversal algorithm for all
kind of graphs. Also, it is closely related to the backtracking algorithms.
The Depth-First Search uses a stack, thus it can be implemented with the
use of recursion. The next slide shows an animation of dfs traversing an
example undirected graph.

18 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Notes

Notes

Notes

Notes

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Notes

Notes

Notes

Notes

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Notes

Notes

Notes

Notes

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Notes

Notes

Notes

Notes

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Notes

Notes

Notes

Notes

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Depth-First Search Algorithm
Animation

000000 11111111

2222

333334444 stack:
3
1
0
4
2

outcome: 3 1 0 4 2

Traversing an undirected graph with the use of the dfs algorithm.

19 / 53

Breadth-First Search Algorithm

The bfs algorithm is similar to the dfs, but when visiting a vertex it
discovers all its unvisited neighbours and then explores them in sequence,
marking them as visited, and discovering their neighbours. It never back-
tracks. Instead of a stack it uses a fifo queue. The next slide shows an
animation of the bfs traversing the same undirected graph, as the dfs
did.

20 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Notes

Notes

Notes

Notes

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Notes

Notes

Notes

Notes

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Notes

Notes

Notes

Notes

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Notes

Notes

Notes

Notes

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Breadth-First Search Algorithm
Animation

0000 1111

2222

3334444

fifo queue: 3 1 2 4 0

outcome: 3 1 2 4 0

Traversing an undirected graph with the use of the bfs algorithm.

21 / 53

Remarks

Please note, that both the dfs and the bfs algorithms can be applied either
to the undirected or directed graphs. They will explore all vertices of a
graph, if the graph is connected or strongly connected. For a disconnected
graph they will visit only these vertices that are reachable from the starting
one. In other words, they will explore only the connected or strongly
connected component of this graph. To visit all vertices of the graph the
algorithms need to check if any vertex of the graph has been left unvisited
after their last run and explore this vertex.
The objective of the dfs and the bfs doesn’t have to be visiting all vertices.
They may be used to find a path from a starting vertex to a goal vertex
or to a vertex that satisfies a goal condition.

22 / 53

The fifo Queue Implementation

The fifo queue, which is required by the bfs algorithm, is implemented
in a static library, that consist of a header file (queue.h) and a source code
file queue.c. The content of the former is shown in the next slide.

23 / 53

Notes

Notes

Notes

Notes

The queue.h File

1 #ifndef GRAPHS_QUEUE_H
2 #define GRAPHS_QUEUE_H
3 struct fifo_node
4 {
5 int vertex_number;
6 struct fifo_node *next;
7 };
8

9 struct fifo_pointers
10 {
11 struct fifo_node *head, *tail;
12 };
13

14 void enqueue(struct fifo_pointers *, int);
15 int dequeue(struct fifo_pointers*);
16 #endif

24 / 53

The queue.h File

The header file starts with the #ifndef preprocessor directive (line no. 1),
which is a part of the header guard (lines 1, 2 and 16). When interpreted,
the directive causes the preprocessor to check, if the graph_queue_h marker
has not already been defined in the program’s source code. If so, then the
preprocessor will insert into the program lines 2–15 of the header file.
Please notice, that directive in the line no. 2 defines the aforementioned
marker. It means that if the header file is included multiple times (with the
use of the #include directive), then the preprocessor will add its content
to the program only once.
In the header file are defined the types of queue node (lines 3–7) and
of queue pointers structure (lines 9–12). Each node of the queue stores
a vertex number (line no. 5). There are also defined prototypes of the
enqueue() and dequeue() functions. Please observe, that the parameter
names don’t have to be specified in prototypes.

25 / 53

The enqueue() Function — queue.c File

1 #include"queue.h"
2 #include<stdlib.h>
3

4 void enqueue(struct fifo_pointers *queue, int vertex_number)
5 {
6 struct fifo_node *new_node = (struct fifo_node

*)malloc(sizeof(struct fifo_node));↪Ï

7 if(new_node) {
8 new_node->vertex_number = vertex_number;
9 new_node->next = NULL;

10 if(queue->head==NULL && queue->tail==NULL)
11 queue->head = queue->tail = new_node;
12 else {
13 queue->tail->next = new_node;
14 queue->tail = new_node;
15 }
16 }
17 }

26 / 53

The enqueue() Function — queue.c File

The queue.h header file is included in the queue.c file (line no. 1). This
allows the compiler to verify that headers of functions defined in the latter
file, correspond to prototypes of these functions. The stdlib.h header
file is also included (line no. 2), because the definitions of enqueue() and
dequeue() invoke functions that allocate and deallocate the heap memory.
The enqueue() function is defined similarly as in the third lecture, however
it doesn’t return anything and takes the number of the graph’s vertex as
a second argument, passed by the vertex_number parameter.

27 / 53

Notes

Notes

Notes

Notes

The dequeue() Function — queue.c File

1 int dequeue(struct fifo_pointers *queue)
2 {
3 int vertex_number = -1;
4 if(queue->head) {
5 vertex_number = queue->head->vertex_number;
6 struct fifo_node *temporary = queue->head->next;
7 free(queue->head);
8 queue->head = temporary;
9 if(temporary==NULL)

10 queue->tail = NULL;
11 }
12 return vertex_number;
13 }

28 / 53

The dequeue() Function — queue.c File

The dequeue() function is also defined in a similar way as in the third
lecture, but this time it returns the number of the vertex that was stored
in the deleted queue node. It has only one parameter, which is used for
passing the address of the queue pointers structure (line no. 1). The
number of the vertex, that is stored in the queue node to be deleted, is
assigned to a local variable named vertex_number (line no. 5). The initial
value of the variable is -1 (line no. 3). In case the dequeue() was called
on an empty fifo queue, it would return that number. However, if the
bfs algorithm is correctly implemented that should never happen.

29 / 53

Adjacency Matrix

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<stdbool.h>
4 #include"queue.h"
5

6 #define NUMBER_OF_VERTICES 5
7

8 typedef int matrix[NUMBER_OF_VERTICES][NUMBER_OF_VERTICES];
9

10 const matrix adjacency_matrix = {
11 {0,1,0,0,1},
12 {1,0,1,1,1},
13 {0,1,0,1,0},
14 {0,1,1,0,1},
15 {1,1,0,1,0}
16 };

30 / 53

Adjacency Matrix

Four header files are included in the program. The stdio.h (line no.
1) contains prototypes of the scanf() and printf() functions, that the
program uses for communicating with the user. In the stdlib.h header
file (line no. 2) are declared the functions responsible for allocating and
deallocating the heap memory. Please notice, that this file is included only
once in this program, because it has its own header guard. The program
also uses the bool type and its values, hence the stdbool.h file header
is included (line no. 3). Finally, the last #include directive includes the
queue.h header file of the library that provides the implementation of the
fifo queue (line no. 4).
The number_of_vertices constant specifies the number of the vertices in
the graph. It is used in the definition of the type of the adjacency matrix
(line no. 8). The matrix itself is defined as constant (line no. 10) of the
adjacency_matrix name and initialized (lines no. 10–16).

31 / 53

Notes

Notes

Notes

Notes

Types Definitions

1 struct vertex
2 {
3 int vertex_number;
4 struct vertex *next;
5 };
6

7 struct vertices_array
8 {
9 bool visited;

10 struct vertex *neighbours;
11 } *adjacency_list;
12

13 typedef void (*algorithm_pointer)(struct vertices_array *,
int);↪Ï

32 / 53

Types Definitions

The neighbours list’s node type (lines 1–5) is based on a structure that
has two members. The first one is used for storing the vertex number (line
no. 3), and the second one is a pointer to the next node in the list. The
struct vertices_array type (lines 7–11) defines the type of the vertices
array elements. Each of them is a structure with two members. The first
one (line no.9), named visited, is used by the implementations of the
dfs and the bfs algorithms. Its value indicates if the vertex has already
been visited or not. The second one, called neighbours, is a pointer to
the neighbours list of a given vertex, or more specifically to its first node.
It is an empty pointer if the vertex has no adjacent vertices. The global
variable adjacency_list (line no. 11) is a pointer to the adjacency list, or
more specifically to the array of vertices that is a part of that list. Initially,
it is an empty pointer, because this array is allocated dynamically. The
function pointer type defined in the 13th line is used to declare a parameter
in one of the program’s function.

33 / 53

The convert() Function

1 struct vertices_array *convert(const matrix adjacency_matrix)
2 {
3 struct vertices_array *list = NULL;
4 list = (struct vertices_array *)calloc(NUMBER_OF_VERTICES, sizeof(struct

vertices_array));↪Ï
5 if(list) {
6 for(int i=0; i < NUMBER_OF_VERTICES; i++) {
7 struct vertex **new_vertex = &list[i].neighbours;
8 for (int j = 0; j < NUMBER_OF_VERTICES; j++) {
9 if (adjacency_matrix[i][j]) {

10 *new_vertex = (struct vertex *)malloc(sizeof(struct vertex));
11 if(*new_vertex) {
12 (*new_vertex)->vertex_number = j;
13 (*new_vertex)->next = NULL;
14 new_vertex = &(*new_vertex)->next;
15 } else fprintf(stderr, "Error creating vertex no. %d.\n",j);
16 }
17 }
18 }
19 }
20 return list;
21 }

34 / 53

The convert() Function

The convert() function takes as an argument, passed by the constant
parameter, the adjacency matrix and returns the address of the adjacency
list2 (line no.1). First, it tries to allocate the memory for the vertices array
(line no. 4) and assigns the value returned by the calloc() function to the
local pointer named list (line no. 3). Next, it checks if this variable is not
an empty pointer (line no. 5). If the condition is met, then the convert()
function uses two for loops to iterate over the adjacency matrix. The
value of the outer loop counter (line no. 6) is used as an index in the
vertices array and as the row index in the adjacency matrix. In this loop
the convert() function takes the vertices array element, specified by the i
variable, and assigns the address of its neighbours pointer field to a local
pointer to a pointer, called new_node (line no. 7). Then, the inner loop
(line no. 8) iterates over all items in the adjacency matrix row, which is
also specified by the i variable.

2More specifically the address of the vertices array, that is a part of this list.
35 / 53

Notes

Notes

Notes

Notes

The convert() Function

If the value of the item, specified by the j variable, is 1 (line no. 9) then
the function tries to allocate memory for a new node in the neighbours list
(line no. 10). If the allocation is successful (verified in the line no. 11),
then convert() initializes the new node by assigning to its vertex_number
member the number of the adjacent vertex, specified by the j variable (line
no. 12), and by assigning the null value to its next member (line no. 13).
Finally, it assigns to the new_vertex pointer to a pointer the address of
the new node next field. However, if the allocation in the line no. 10
failed, then the function would display an appropriate message using the
standard error stream (line no. 15). That way the convert() function
creates neighbours lists for all vertices. When both loops stop, it returns
the address of the adjacency list (line no. 20) and exits.

36 / 53

The print_adjacency_list() Function

1 void print_adjacency_list(struct vertices_array
*adjacency_list)↪Ï

2 {
3 for(int i=0; i < NUMBER_OF_VERTICES; i++) {
4 printf("Vertices adjacent to %d vertex: ",i);
5 struct vertex *neighbour =

adjacency_list[i].neighbours;↪Ï

6 while(neighbour) {
7 printf("%3d", neighbour->vertex_number);
8 neighbour = neighbour->next;
9 }

10 puts("");
11 }
12 }

37 / 53

The print_adjacency_list() Function

The print_adjacency_list() function displays the adjacency list. It
doesn’t return any value and takes the list’s address as an argument. In the
for loop (line no. 3) the function displays a message informing, that it is
going to print on the screen the adjacent vertices of the vertex specified by
the loop counter (line no. 4). Then, it assigns to the local pointer, named
neighbour, the address stored in the neighbours field of the vertex array
element, specified by the i variable (line no. 5). In the while loop (lines
6–9) the numbers of adjacent vertices stored in the list are displayed. Note,
that if the vertex, currently specified by the i variable, has no neighbours,
then the while loop won’t be performed. After this loop stops, the puts()
function is invoked, to move the cursor to the next line on the screen. The
for loop stops after it processes the last element in the vertices array.

38 / 53

The dfs() Function

1 void dfs(struct vertices_array *adjacency_list, int
vertex_number)↪Ï

2 {
3 printf("%3d", vertex_number);
4 struct vertex *neighbour =

adjacency_list[vertex_number].neighbours;↪Ï

5 adjacency_list[vertex_number].visited = true;
6 while(neighbour) {
7 if(!adjacency_list[neighbour->vertex_number].visited)
8 dfs(adjacency_list, neighbour->vertex_number);
9 neighbour = neighbour->next;

10 }
11 }

39 / 53

Notes

Notes

Notes

Notes

The dfs() Function

The dfs() implements the Depht-First Search graph traversal algorithm.
It takes two arguments, the adjacency list (passed by its first parameter)
and the number of the starting vertex (passed by its second argument.)
The function doesn’t returns any value. It first displays the number of
the currently visited vertex (line no. 3) and assigns the address stored in
the neighbours member of the element that represents this vertex in the
vertices array, to a local pointer called neighbour (line no. 4). Then, the
function marks the current vertex as visited (line no. 5). The while loop
(lines 6–10) traverses the neighbours list of this vertex (if it exists). It
checks if the current neighbour is unvisited (line no. 7) and if so, then it
calls the dfs() function recursively, passing as its argument the adjacency
list and the number of this neighbour (line no. 8). The while loop stops
when there is no neighbours left on the list to visit.

40 / 53

The bfs() Function

1 void bfs(struct vertices_array *adjacency_list, int vertex_number)
2 {
3 struct fifo_pointers queue;
4 queue.head = queue.tail = NULL;
5 enqueue(&queue,vertex_number);
6 while(queue.head) {
7 vertex_number = dequeue(&queue);
8 if(!adjacency_list[vertex_number].visited) {
9 struct vertex *neighbour =

adjacency_list[vertex_number].neighbours;↪Ï

10 while(neighbour) {
11 enqueue(&queue,neighbour->vertex_number);
12 neighbour = neighbour->next;
13 }
14 printf("%3d", vertex_number);
15 adjacency_list[vertex_number].visited = true;
16 }
17 }
18 }

41 / 53

The bfs() Function

The bfs() function implements the Breadth-First Search graph traversal
algorithm. It takes the same arguments as the dfs() function and also
returns no value. In the line no. 4 it initializes the fifo queue pointers.
The structure of the queue pointers is declared in the line no. 3. Then,
it adds the first node to the queue, that stores the number of the starting
vertex (line no. 5). The outer while loop (lines 6–17) checks if the queue
is not empty (line no. 6). If the condition is satisfied, then it assigns the
number of the vertex stored in the queue’s first node to the vertex_number
local variable and removes that node from the queue (line no. 7). Next, it
checks whether this vertex has not yet been visited (line no. 8). If so, then
the loop assigns the address of its list of neighbours to a local neighbour
pointer (line no. 9). The inner while loop (lines 10–13) traverses this list,
on the condition that it is not empty, and adds to the fifo queue nodes,
that store numbers of the vertex neighbours.

42 / 53

The bfs() Function

When the inner loop stops, the outer one prints the vertex number (line
no. 14) and marks it as visited (line no. 15). The bfs() function exits
when the outer while stops.

43 / 53

Notes

Notes

Notes

Notes

The visit_all_vertices() Function

1 void visit_all_vertices(struct vertices_array
*adjacency_list, int start_vertex, algorithm_pointer
algorithm)

↪Ï

↪Ï

2 {
3 if(start_vertex>=0 && start_vertex < NUMBER_OF_VERTICES)

{↪Ï

4 algorithm(adjacency_list, start_vertex);
5 for (int i = 0; i < NUMBER_OF_VERTICES; i++)
6 if (!adjacency_list[i].visited)
7 algorithm(adjacency_list, i);
8 } else
9 puts("Wrong starting vertex number.");

10 }

44 / 53

The visit_all_vertices() Function

The dfs() and bfs() functions won’t visit all vertices if the graph is
disconnected. For that reason the visit_all_vertices() function has
been created. It doesn’t return any value but takes three arguments, the
first one is the adjacency list, the second one is the starting vertex number
and the third one is the address of the function that implements either the
dfs() or bfs() algorithm. The last argument is passed by the algorithm
function pointer (line no. 1), whose type is defined in the beginning of the
program. The function first verifies whether the starting vertex number
is valid (line no. 3) and then it invokes the function that implements the
graph traversal algorithm, using the function pointer (line no. 4). When
this function exits the visit_all_vertices() checks in the for loop if
there are any unvisited vertices left in the graph (line no. 6) and when it
finds such a vertex then it invokes the function implementing the graph
traversal algorithm for that vertex. After the loop stops there are no
unvisited vertices in the graph. If the starting vertex number is invalid,
an appropriate message is displayed.

45 / 53

The remove_adjacency_list() Function

1 struct vertices_array *remove_adjacency_list(struct
vertices_array *adjacency_list)↪Ï

2 {
3 for (int i = 0; i < NUMBER_OF_VERTICES; i++) {
4 struct vertex *neighbour =

adjacency_list[i].neighbours;↪Ï

5 while(neighbour) {
6 struct vertex *temporary = neighbour->next;
7 free(neighbour);
8 neighbour = temporary;
9 }

10 }
11 free(adjacency_list);
12 return NULL;
13 }

46 / 53

The remove_adjacency_list() Function

The remove_adjacency_list() function is responsible for releasing the
heap memory allocated for the adjacency list. It takes the address of
the list pointer as an argument and returns null. This value should be
assigned to the adjacency list pointer. In the for loop (lines 3–10) the
function visits all elements of the vertices array and in the while loop (lines
5–9) it deletes all nodes of neighbours lists that they point to. Finally, the
function deletes the vertices array (line no. 11), returns the null value
(line no. 12) and exits.

47 / 53

Notes

Notes

Notes

Notes

The main() Function

1 int main(void)
2 {
3 adjacency_list = convert(adjacency_matrix);
4 if(adjacency_list) {
5 print_adjacency_list(adjacency_list);
6 puts("Please specify the starting vertex:");
7 int start_vertex;
8 scanf("%d",&start_vertex);
9 printf("DFS outcome: ");

10 visit_all_vertices(adjacency_list,start_vertex,dfs);
11 puts("");
12 for(int i=0; i < NUMBER_OF_VERTICES; i++)
13 adjacency_list[i].visited = false;
14 printf("BFS outcome: ");
15 visit_all_vertices(adjacency_list,start_vertex,bfs);
16 puts("");
17 adjacency_list = remove_adjacency_list(adjacency_list);
18 }
19 return 0;
20 }

48 / 53

The main() Function

In the main() function the program first calls the convert() function and
assigns the value that it returns to the adjacency_list pointer (line no.
3). If this pointer is not an empty pointer (line no. 4) the rest of the
operations in the main() is performed. The adjacency list is displayed
(line no. 5) and the program asks the user to specify the starting vertex
for the graph traversal algorithms. The number of that vertex is assigned
to the start_vertex variable (declared in the line no. 7) by the scanf()
function (line no. 8). Then, the main() function informs the user that it is
going to display the result of the dfs algorithm (line no. 9) and invokes the
visit_all_vertices() function, passing as its last argument the address
of the dfs() function (line no. 10). Later, the main() function invokes
visit_all_vertices() with the address of the bfs() function as its last
argument (line no. 15). Before that however, it has to mark all the graph
vertices explored by the dfs() function as unvisited. Otherwise, the bfs()
function won’t visit any of them.

49 / 53

The main() Function

This operation is performed in the for loop (lines 12–13). After printing
the result of the bfs algorithm the main() function deletes the adjacency
list (line no. 17), returns zero (line no. 19) and the program ends.

50 / 53

Summary

Graphs are a relatively simple, yet powerful, tool that can be applied for
solving many problems. For example, they can be used to model social,
computer, land, marine and air transport networks, electronic circuits and
algorithms (flowcharts). They are also useful in Artificial Intelligence ap-
plications. Moreover, there are a lot of ready-to-use graph algorithms, so
there is no need to rediscover them. Usually, finding an answer for an is-
sue with the use of graphs requires only expressing the problem as a graph
and choosing a proper algorithm. The dfs and bfs are the primary graph
traversal algorithm, that can be used to develop many other useful graph
algorithms. They can be applied to any type of graph, including directed,
undirected, connected or disconnected.
For more information on these topics please see “Introduction to Algo-
rithms” by T. H. Cormen, Ch. E. Leiserson and R. Rivest, or “The Algo-
rithm Design Manual” by Steven S. Skiena.

51 / 53

Notes

Notes

Notes

Notes

Questions

?

52 / 53

The End

Thank You For Your Attention!

53 / 53

Notes

Notes

Notes

Notes

	Introduction
	Graph Theory
	Graphs as Data Structures
	Depth-First Search Algorithm
	Breadth-First Search Algorithm
	Implementation
	Summary
	The End

