
Fundamentals of Programming 2
Singly Linked and Doubly Linked Lists

Arkadiusz Chrobot

Department of Information Systems

April 16, 2024

1 / 82

Outline

Introduction

Singly Linked List

Doubly Linked List

2 / 82

Introduction

In the last lecture we have discussed two dynamic data structures, the stack
and the queue. They are a special case of more generic data structures
called lists. In lists a node can be added or removed at any location. They
are also linear structures, meaning that any node can have at most one
successor and one predecessor.
In this lecture we are going to discuss two kinds of lists, the singly linked
list and the doubly linked list. To explain how they work and how they are
build we will use two programs applying the list to store natural numbers
(one node — one number), in a non-decreasing order.

3 / 82

Singly Linked List
Node Data Type

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node
5 {
6 int data;
7 struct list_node *next;
8 } *list_pointer;

4 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Node Data Type

The first of the programs demonstrates how to use the singly linked list.
In the foregoing slide the first part of its code is shown. There are included
two header files, stdio.h and stdlib.h. The first one allows the program
to use the printf() function, and the second one enables it to apply
functions for managing the heap.
Just like the stack or queue, the list needs a data type for its node to be
defined. Its definition is in lines 4–8. The data member is for storing a
natural number, although its data type allows it to store integer number.
The next member is a pointer, that makes it possible to link the node
with another.
In the line no. 8 is declared the list pointer (the list_pointer variable).
It is a pointer that always should point to the first node of the list or be
empty, if the list is also empty. In this program the list pointer is a global
variable, meaning that its default value is zero or null. It is a correct
value, because the list is initially empty.

5 / 82

Singly Linked List

The two next slides contain declarations of functions that together are
responsible for adding a new node to the list, so to numbers stored in
the structure form a non-decreasing sequence. The pointer to the pointer
parameter used in the functions allows them to handle any of the cases of
adding a new node to the singly linked list:

1. adding to the empty list,
2. adding to the front of the list,
3. adding inside the list,
4. adding at the end of the list.

Aside from generally describing the code of the functions we are going to
analyse how the functions work in all of these cases, to better understand
them.

6 / 82

Singly Linked List
The create_and_add_node() Function

1 int create_and_add_node(struct list_node **node, int number)
2 {
3 struct list_node *new_node = (struct list_node

*)malloc(sizeof(struct list_node));↪Ï

4 if(!new_node)
5 return -1;
6 new_node->data = number;
7 new_node->next = *node;
8 *node = new_node;
9 return 0;

10 }

7 / 82

Singly Linked List
The create_and_add_node() Function

The create_and_add_node() function is responsible for creating a new
node and adding it to the list. It takes two arguments. The first one is
passed by the node parameter and it is and address of a pointer to the list
node before which a new one should be inserted. The second argument
is a number that should be stored in the new node. First, the function
allocates memory for the new node (line no. 3) and checks if this operation
was successful (line no. 4). If not, the function returns -1 and exits (line
no. 5). Otherwise, it assigns to the data member of the new node the
number that is passed by the second parameter (line no. 6). Then it
assigns to the next member of the new node the address of the node
stored in the pointer pointed by the node parameter (line no. 7). Finally,
the address of the new node is stored in the pointer pointed by the node
(line no. 8) and the function exits returning 0.

8 / 82

Notes

Notes

Notes

Notes

Singly Linked List
The add_node() Function

1 int add_node(struct list_node **node, int number)
2 {
3 while(*node != NULL && (*node)->data < number)
4 node = &(*node)->next;
5 return create_and_add_node(node, number);
6 }

9 / 82

Singly Linked List
The add_node() Function

The create_and_add_node() function is invoked in the program by add_node().
Only the latter should be used for adding a new node to the list in the
rest of the program. It takes as the arguments the address of the list
pointer, which is passed by the node parameter, and the number, passed
by the number parameter, that should be stored in the new node. First,
the function performs the while loop (lines no. 3–4), to find a node in the
list, before which the new one should be inserted. This loop stops when
the pointer pointed by the node parameter is empty, or when the number
stored in the node pointed by the pointer, which address is stored in the
node parameter, is greater or equal to the number passed by the number
parameter. Please notice, that in each iteration of the while loop, the
address of the next member, of the ensuing node in the list is assigned to
the node parameter. The next slide illustrates how the list is traversed in
the loop.

10 / 82

Singly Linked List
Traversing The List

next

data

next

data

next

data

null

data

list_pointer

node

node node node node

Traversing the singly linked list

11 / 82

Singly Linked List
Traversing The List

next

data

next

data

next

data

null

data

list_pointer

node

node

node node node

Traversing the singly linked list

11 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Traversing The List

next

data

next

data

next

data

null

data

list_pointer

node

node

node

node node

Traversing the singly linked list

11 / 82

Singly Linked List
Traversing The List

next

data

next

data

next

data

null

data

list_pointer

node

node node

node

node

Traversing the singly linked list

11 / 82

Singly Linked List
Traversing The List

next

data

next

data

next

data

null

data

list_pointer

node

node node node

node

Traversing the singly linked list

11 / 82

Singly Linked List
The add_node() Function

After the while loop stops, the add_node() functions invokes the create_and_add_node()
function and exits returning the same value as the former function.
These short descriptions don’t explain thoroughly how the functions per-
form the operation of adding a node to the list. Let’s analyse than each
of the mentioned cases, starting with the one where the list is empty.

12 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Adding The First Node

The while loop stops at once, because the list_pointer, which address
is passed to the add_node() function is empty — the *node != null ex-
pression is false. The create_and_add_node() is invoked, which allocates
memory for the new node, and if the operation is successful, it stores in
the node’s data member the number passed by the number parameter (line
no. 6, slide no. 7). Next, the function assigns to the next member of the
new node the address stored in the pointer pointed by the node parameter
(line no. 7). Let’s remind, that in this case it is list pointer, which is
empty. It means that the null is assigned to the member. This value is
valid, because the new node becomes, at the same time, the first and the
last node in the list. The statement in the line no. 8 assigns the address
of the new node to the list pointer, making the list_pointer to point to
this node, and creating a singly linked list with only one node. The entire
operation is illustrated in the next slide.

13 / 82

Singly Linked List
Adding The First Node

node list_pointer (null)

new_node
data

next

Before the line no. 7 of the create_and_add_node() is performed

14 / 82

Singly Linked List
Adding The First Node

node list_pointer (null)

new_node
data

null

Before the line no. 8 of the create_and_add_node() is performed

14 / 82

Singly Linked List
Adding The First Node

node list_pointer

new_node
data

null

After the line no. 8 of the create_and_add_node() is performed

14 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Adding At The Front

In this case the list_pointer stores the address of the list first node, but
the number that is in it, is greater or equal to the one that should be stored
in the new node. It means that the while loop stops at once, because
the (*node)->data < number is false, and the create_and_add_node()
function is invoked. This function creates a new node and, if the operation
is successful, it assigns to the data member of the new node the number
passed by the number parameter. Next, the address from the pointer
pointed by the node parameter is assigned to the next member of the new
node (line no. 7, slide no. 7). Just like in the former case, this pointer
is the list_pointer, but this time it stores the address of the list first
node. It means that now the next member of the new node points to
this former first node. In the line no. 8 of the create_and_add_node()
function the address of the new node is stored in the list pointer. It is
necessary, because this pointer should point to the first node of the list,
which now is the new node.

15 / 82

Singly Linked List
Adding At The Front

new_node

data

next

node list_pointer

data

next

Before the line no. 7 of the create_and_add_node() is performed

16 / 82

Singly Linked List
Adding At The Front

new_node

data

next

node list_pointer

data

next

Before the line no. 8 of the create_and_add_node() is performed

16 / 82

Singly Linked List
Adding At The Front

new_node

data

next

node list_pointer

data

next

After the line no. 8 of the create_and_add_node() is performed

16 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Adding Inside

In this case the new node is added inside the list, in other words, be-
tween to nodes that already are in the list. This time the while loop
in the add_node() stops when the node parameter stores the address of
the node’s next member that points to another node storing the number
greater or equal to the one that is passed by the number parameter. It
means, that, just like in the case of adding the new node at list’s front, the
(*node)->data < number is false. The create_and_add_node() function
is called. It tries to create a new node and, if the operation is successful,
stores in the node the number passed by the number parameter (line no.
6). Next, it assigns to the new node’s next member the address stored in
the next member pointed by the node parameter. It is the address of the
node before which the new should be inserted (line no. 7). In the line no.
8, the address of the new node is stored in the next member pointed by
the node parameter.

17 / 82

Singly Linked List
Adding Inside

node

next

data

next

data
new_node

next

data

Before the line no. 7 of the create_and_add_node() is performed

18 / 82

Singly Linked List
Adding Inside

node

next

data

next

data
new_node

next

data

Before the line no. 8 of the create_and_add_node() is performed

18 / 82

Singly Linked List
Adding Inside

node

next

data

next

data
new_node

next

data

After the line no. 8 of the create_and_add_node() is performed

18 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Adding At The End

If the new node stores a number greater than any number already stored
in the list, then it has to be added at the end of the list. In this case the
while loop in the add_node() function stops when the *node != null
expression is false, meaning that the node parameter points to the node’s
next member that stores the null value. This member belongs to the
last node in the list. Its address is passed to the create_and_add_node()
function, together with the number that should be stored in the new node.
The latter function tries to create a new node, just like in the previous
cases, and if the operation is successful, it stores the number in this node
(line no. 6, slide no. 7). Next, it assigns to the next member of new node
the null value stored in the pointer pointed by the node parameter. It
is a correct value for this member, because the node will be added at the
end of the list.

19 / 82

Singly Linked List
Adding At The End

In the line no. 8 the create_and_add_node() function assigns to the next
member pointed by the node parameter the address of the new node. The
former last node of the list begins to point, with its next member, the
current last node in the list.

20 / 82

Singly Linked List
Adding At The End

node

null

data
new_node

next

data

Before the line no. 7 of the create_and_add_node() is performed

21 / 82

Singly Linked List
Adding At The End

node

null

data
new_node

null

data

Before the line no. 8 of the create_and_add_node() is performed

21 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Adding At The End

node

next

data
new_node

null

data

After the line no. 8 of the create_and_add_node() is performed

21 / 82

Singly Linked List
The delete_node() Function

1 void delete_node(struct list_node **node, int number)
2 {
3 while(*node && (*node)->data != number)
4 node = &(*node)->next;
5 if(*node) {
6 struct list_node *temporary = (*node)->next;
7 free(*node);
8 *node = temporary;
9 }

10 }

22 / 82

Singly Linked List
The delete_node() Function

The delete_node() function is responsible for removing a single element
from the list, that stores in the data member the same number, as it is
passed by the number parameter. If the function doesn’t find such a node
in the list then it exits without removing anything from the list. If there is
more than one node in the list that stores this number, then the function
removes the first of them.
The definition of this function is more concise that the two described ear-
lier. The delete_node() function, just like the add_node() takes as the
first argument the address of the list pointer. As the second one is passed
the number that the node for removing should store. The function returns
nothing.

23 / 82

Singly Linked List
The delete_node() Function

First, it performs the while loop that is quite similar to the loop in the
add_node() function (lines no. 3–4). The only difference is in the operator
applied in the second expression of the loop’s condition. The loop stops
when the pointer pointed by the node parameter is empty or points to
node that stores the number passed by the number parameter. The first
case means, that there is no node in the list, that should be removed. In
the second case such an operation should be performed. To distinguish
these cases, the function checks if the pointer pointed by the node is not
empty (line no. 5). If the condition is met, then it assigns to the temporary
variable the address stored in the next member of the node pointed by the
pointer which address is, in turn, stored in the node parameter (line no. 6).
Then it removes this node (line no. 7) and assigns to the pointer pointed
by the node parameter the address stored in the temporary pointer (line
no. 8).

24 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Funkcja delete_node()

The short description, from the previous slide, doesn’t discuss in the details
the work of the delete_node() function. Let’s analyse its behaviour for
the three most interesting cases:

1. deleting the first node of the list,
2. deleting an inner node in the list,
3. deleting the last node in the list.

25 / 82

Singly Linked List
Deleting The First Node

In the first case the while loop in the delete_node() function stops
at once, because the (*node)->data != number is false. It means that
the number it searches for is in the first node, and that node should be
deleted. It also means that the condition in the line no. 5 is fulfilled. The
delete_node() function assigns to the temporary variable the address
stored int the next member of node pointed by the pointer which address,
in turn, is stored in the node parameter (line no. 6). In this case, this
pointer is the list pointer (the list_pointer), and this node is the list first
node. Therefore, in the temporary variable is stored the address of the
second node in the list (provided it exists). The delete_node() function
releases the memory allocated for the first node (line no. 7) and assigns
to the pointer pointed by the node parameter the address stored in the
temporary pointer (line no. 8).

26 / 82

Singly Linked List
Deleting The First Node

Please notice, that the function works correctly also when the first node
is at the same time the last in the list. In this case, in the line no. 6,
the null value is assigned to the temporary variable, which then will be
assigned to the list pointer (line no. 8). It is an expected outcome, because
after the only node is removed the list becomes empty and so should the
list_pointer variable be.
The next slide illustrates the removal of the first node from a list that has
at least two nodes, by the delete_node() function.

27 / 82

Singly Linked List
Deleting The First Node

data

next

node list_pointer

data

next

Before the line no. 6 of the delete_node() is performed

28 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Deleting The First Node

data

next

node list_pointer temporary

data

next

Before the line no. 7 of the delete_node() is performed

28 / 82

Singly Linked List
Deleting The First Node

data

next

node list_pointer temporary

data

next

Before the line no. 8 of the delete_node() is performed

28 / 82

Singly Linked List
Deleting The First Node

data

next

node list_pointer temporary

data

next

After the line no. 8 of the delete_node() is performed

28 / 82

Singly Linked List
Deleting an Inner Node

In the case when the node to be removed is inside the list, the while loop
in the delete_node() stops when the node parameter stores the address
of the next member that points to the node storing the number passed by
the number parameter. Yet again the (*node)->data != number is false,
but the condition in the line no. 5 is met. The function assigns to the
temporary pointer the address of the node in the list that is next to the
one that should be removed (line no. 6). Then, it disposes the memory
allocated for the latter node (line no. 7) and assigns to the next mem-
ber pointed by the node parameter the address stored in the temporary
variable. Thus, the node, that preceded the one which has been removed,
starts pointing to the one that succeeded the removed node. The list stays
coherent.

29 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Deleting an Inner Node

node

data

next

data

next

data

next

temporary

Before the line no. 6 of the delete_node() is performed

30 / 82

Singly Linked List
Deleting an Inner Node

node

data

next

data

next

data

next

temporary

Before the line no. 7 of the delete_node() is performed

30 / 82

Singly Linked List
Deleting an Inner Node

node

data

next

data

next

data

next

temporary

Before the line no. 8 of the delete_node() is performed

30 / 82

Singly Linked List
Deleting an Inner Node

node

data

next

data

next

data

next

temporary

After the line no. 8 of the delete_node() is performed

30 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Deleting The Last Node

In the third case the while loop in the delete_node() function also stops
when the node parameter stores the address of the next member that
points to the node where the number passed by the number parameter is
stored. Once again the (*node)->data != number) is not met, but the
number that the loop was searching for is in the last node of the list.
After the delete_node() function verifies the condition in the line no. 5,
it assigns to the temporary variable the address stored in the next member
of the node that is pointed by the pointer which address, in turn, is stored
in the node parameter (line no. 6). This pointer is the next member of
the last but one node of the list. The address stored in the temporary
variable is actually the null value. The delete_node() function frees the
memory allocated for the last node (line no. 7) and assigns to the next
member of the node that so far was the last but one, the null value (line
no. 8) — now that node is the last in the list.

31 / 82

Singly Linked List
Deleting The Last Node

data

next

data

null

nodenode

temporary (null)

Before the line no. 6 of the delete_node() is performed

32 / 82

Singly Linked List
Deleting The Last Node

data

next

data

null

nodenode

temporary (null)

Before the line no. 7 of the delete_node() is performed

32 / 82

Singly Linked List
Deleting The Last Node

data

next

data

null

nodenode

temporary (null)

Before the line no. 8 of the delete_node() is performed

32 / 82

Notes

Notes

Notes

Notes

Singly Linked List
Deleting The Last Node

data data

null

node

null

node

temporary (null)

After the line no. 8 of the delete_node() is performed

32 / 82

Singly Linked List
The print_list() Function

1 void print_list(struct list_node *node)
2 {
3 while(node) {
4 printf("%d ", node->data);
5 node = node->next;
6 }
7 puts("");
8 }

33 / 82

Singly Linked List
The print_list() Function

The print_list() function displays numbers stored in the list. It takes
only one argument, which is the address of the first node in the list. If the
list is empty, the function won’t print anything. The parameter of the list
is a first level pointer, because there is no need to modify the list pointer
or the next member of the nodes inside this function. The print_list()
doesn’t return any value. Inside that function a while loop is performed
(lines no. 3–6), that traverses the list. It does so as long as the value of the
node parameter is different than null. Inside the loop the number, from
the data member of the node currently pointed by the node parameter, is
displayed (line no. 4), and then the node is assigned the address stored in
the next member of the node that it currently points to. In other words,
the node parameter is ”advanced” to the next node in the list (line no. 5).

34 / 82

Singly Linked List
The remove_list() Function

1 void remove_list(struct list_node **node)
2 {
3 while(*node) {
4 struct list_node *temporary = (*node)->next;
5 free(*node);
6 *node = temporary;
7 }
8 }

35 / 82

Notes

Notes

Notes

Notes

Singly Linked List
The remove_list() Function

The remove_list() function is responsible for deleting the list, which
means that is has to release memory allocated for all its nodes. The node
parameter of that function is a pointer to a pointer, because remove_list()
needs to modify the entire structure of the list. The parameter is used for
passing the address of the address of the list pointer. The function doesn’t
return any value.
To delete the list the remove_list() function performs a while loop (lines
no. 3–7), similar to the one in the print_list() function. However, this
one checks in its condition if the pointer pointed by the node parameter
is not empty. In the loop body the address on the next node in the list
(provided, it exists) is stored in the temporary variable (line no. 4) and the
node pointed by the pointer, which address is stored in the node parameter,
is deleted (line no. 5). Then, to the pointer that pointed to the deleted
node is assigned the address stored in the temporary variable. In that way
the function removes all nodes of the list.

36 / 82

Singly Linked List
The main() Function, part 1

1 int main(void)
2 {
3 for(int i=1; i<5; i++)
4 if(add_node(&list_pointer,i)==-1)
5 fprintf(stderr,"Error adding a node with %d

number to the list!\n",i);↪Ï

6 for(int i=6; i<10; i++)
7 if(add_node(&list_pointer,i)==-1)
8 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",i);↪Ï

9 print_list(list_pointer);
10 if(add_node(&list_pointer,0)==-1)
11 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",0);↪Ï

12 print_list(list_pointer);

37 / 82

Singly Linked List
Funkcja main(), part 2

1 if(add_node(&list_pointer,5)==-1)
2 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",5);↪Ï

3 print_list(list_pointer);
4 if(add_node(&list_pointer,7)==-1)
5 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",7);↪Ï

6 print_list(list_pointer);
7 if(add_node(&list_pointer,10)==-1)
8 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",10);↪Ï

9 print_list(list_pointer);
10 puts("");

38 / 82

Singly Linked List
Funkcja main(), part 3

1 delete_node(&list_pointer,0);
2 print_list(list_pointer);
3 delete_node(&list_pointer,1);
4 print_list(list_pointer);
5 delete_node(&list_pointer,1);
6 print_list(list_pointer);
7 delete_node(&list_pointer,4);
8 print_list(list_pointer);
9 delete_node(&list_pointer,7);

10 print_list(list_pointer);
11 delete_node(&list_pointer,10);
12 print_list(list_pointer);
13 remove_list(&list_pointer);
14 return 0;
15 }

39 / 82

Notes

Notes

Notes

Notes

Singly Linked List
The main() Function

In the main() function all earlier defined function (excluding the create_and_add_node(),
which is called by the add_node() function) are invoked, to test if they
work correctly. In the first for loop, nodes with natural numbers ranging
form 1 to 4 (lines 3–5, slide no. 37) are added to the list. Please notice
the way of invoking the add_node() function. It is checked in each it-
eration of the for loop if the function has returned the -1 value, which
would mean that some exception has occurred. In that case the program
would display an appropriate message. Also please notice the first argu-
ment of this function — as it was described before, it is the address of the
first node in the list. The second for loop (lines no. 6–8, slide no. 37)
adds to the list nodes that store numbers ranging from 6 to 9. Then, the
print_list() function is invoked (line no. 9, slide no. 37), that should
display all aforementioned numbers.

40 / 82

Singly Linked List
The main() Function

Next, in the main() function are added to the list nodes that store the
numbers 0 (lines no. 10–11, slide no. 37), 5 (lines no. 1–2, slide no. 38),
7 (lines no. 4–5, slide no. 38) and 10 (lines no. 7–8, slide nr 38). After
each such an operation the print_list() function is called. Numbers in
the new nodes are specifically chosen to test if the add_node() function
correctly adds nodes at the front of the list (the 0 number), inside the list
(the 5 number), inside the list, but if there is another node storing the
same number (the 7 number) and at the end of the list (the 10 number).

41 / 82

Singly Linked List
The main() Function

After finishing adding the nodes, the main() function starts removing them
with the help of the delete_node() function. First, it is deletes the node
that stores 0 (line no. 1, slide no. 39), to check, if the delete_node()
function correctly removes the first node in the list. Next, the node storing
the 1 is deleted (line no. 3, slide no. 39). Again it is the first node in the
list. Then the main() function tries to delete the node storing 1 once more.
This time there is no such node (line no. 5, slide no. 39), but it allows us
to verify if the delete_node() correctly handles such a case. Then, the
node that stores 4 is deleted (line no. 7, slide no. 39), that is inside the
list. The node containing 7 is removed in the line no. 9, slide no. 39. It is
also an inner node, but stores the same number as another node. Finally,
the node storing 10, that is the last node in the list, is deleted (line no. 11,
slide no. 39). After each removal of a node the print_list() function is
invoked, to show the changes. Eventually, the remove_list() is called to
delete the remaining nodes.

42 / 82

Doubly Linked List

The construction of the doubly linked list is very similar to the singly
linked list. The only difference is that each element of the doubly linked
list has an additional member that stores the address of the preceding
node, with the exception of the first node in the list, who doesn’t have a
predecessor.
The descriptions of functions defined in the second program are focused
on the difference between them and their equivalents in the first program,
because both programs are very similar.

43 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Node Data Type

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node
5 {
6 int data;
7 struct list_node *previous, *next;
8 } *list_pointer;

44 / 82

Doubly Linked List
Node Data Type

The beginning of the second program is almost the same as the first one.
The difference is in the data type of the list node. It has an additional
member, called previous. It is a pointer where the address of the node’s
predecessor is stored. In the case of the list first node, this member stores
the null value.
It is possible to create a double linked list with only one pointer member
in each node. Such a list is called an xor-list. It allows the programmer
to save space in the memory that would be occupied by the additional
member, however it requires complex operations for traversing and adding
or deleting nodes. Therefore, it is rarely used and it is not discussed in
this lecture in details.

45 / 82

Doubly Linked List
The create_and_add_node() Function

1 int create_and_add_node(struct list_node **node, struct
list_node* preceding, int number)↪Ï

2 {
3 struct list_node *new_node = (struct list_node

*)malloc(sizeof(struct list_node));↪Ï

4 if(!new_node)
5 return -1;
6 new_node->data = number;
7 new_node->next = *node;
8 new_node->previous = preceding;
9 if(*node)

10 (*node)->previous = new_node;
11 *node = new_node;
12 return 0;
13 }

46 / 82

Doubly Linked List
The create_and_add_node() Function

The create_and_add_node(), when compared with its equivalent for the
singly linked list, has an additional pointer parameter (called preceding),
that is used for passing the address of a node that contains the next
member pointed by node parameter, or the null value, depending on the
location, where the new node should be added to the list. The function
has to take into account the previous member. That’s why in the line no.
8 it assigns to the member the address stored in the preceding pointer.
Additionally, it verifies if there is a node that should be the successor of
the new one in the list (line no. 9), and if it is so, it stores the address of
the new node in the previous member of that node (line no. 10).

47 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
The add_node() Function

1 int add_node(struct list_node **node, int number)
2 {
3 struct list_node *preceding = NULL;
4 while(*node != NULL && (*node)->data < number) {
5 preceding = *node;
6 node = &(*node)->next;
7 }
8 return create_and_add_node(node, preceding, number);
9 }

48 / 82

Doubly Linked List
The add_node() Function

The add_node() function, comparing to its equivalent for the singly linked
list, has a local pointer called preceding, that initially has the null value
(line no. 3). However, in each iteration of the while loop, the address of
the node that contains the next member, which address is stored in the
node parameter in the line no. 6, is assigned to that pointer (line no. 5).
The preceding pointer is a helper pointer and it is passed as a second
argument to the create_and_add_node() function (line no. 8).
Just like in the case of the previous program we are going to analyse the
work of these functions for the four most interesting cases of adding a
new node to the list. This time however we are mainly going to focus on
the differences between these functions and their equivalents for the singly
lined list.

49 / 82

Doubly Linked List
Adding The First Node

In the case of adding the first node to the list, the while loop in the
add_node() function stops at one, and the node parameter points to the
empty list pointer (the list_pointer variable). The preceding pointer is
also empty. The create_and_add_node() function is invoked, that creates
a new node, stores a number passed by the number parameter in it, and
assigns to its next (line no.7) and previous (line no. 8) members the
null value. Because there is no node that would precede, or succeeded
the new one in the list, the condition in the line no. 9 is not met and
the function performs the statement in the line no. 11, assigning in the
list pointer the address of the new node, which becomes the first and only
node in the list. After that the function return 0 and exits.

50 / 82

Doubly Linked List
Adding The First Node

node list_pointer (null)

new_node

preceding (null)

data

previous

next

Before the line no. 7 of the create_and_add_node() is performed

51 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Adding The First Node

node list_pointer (null)

new_node

preceding (null)

data

previous

null

Before the line no. 8 of the create_and_add_node() is performed

51 / 82

Doubly Linked List
Adding The First Node

node list_pointer (null)

new_node

preceding (null)

data

null

null

Before the line no. 11 of the create_and_add_node() is performed

51 / 82

Doubly Linked List
Adding The First Node

node list_pointer

new_node

preceding (null)

data

null

null

After the line no. 11 of the create_and_add_node() is performed

51 / 82

Doubly Linked List
Adding At The Front

In the case when the new node should be added at the front of the list,
after the while loop in the add_node() stops, the preceding pointer
has the null value, but the node pointer points to the list pointer (the
list_pointer variable), that stores the address of the list first node. The
create_and_add_node() function, after it creates new node and stores
in it the number passed by the number parameter, assigns to the node’s
next the address of the currently first node in the list (line no. 7). Next,
it assigns to the previous member of the new node the null from the
preceding parameter (line no. 8). Then, it checks if there is a node that
should be the successor of the new one in the list. It is the currently first
node in the list, so it stores in its previous member the address of the
new node (line no. 10). After that, the function assignes to the list pointer
the address of the new node, so it becomes the first node in the list (line
no. 11).

52 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Adding At The Front

preceding (null)

new_node data

next

previous

node list_pointer

data

null

next

Before the line no. 7 of the create_and_add_node() is performed Before the
line no. 8 of the create_and_add_node() is performed

53 / 82

Doubly Linked List
Adding At The Front

preceding (null)

new_node data

previous

next

node list_pointer

data

null

next

Before the line no. 8 of the create_and_add_node() is performed

53 / 82

Doubly Linked List
Adding At The Front

preceding (null)

new_node data

null

next

node list_pointer

data

null

next

Before the line no. 8 of the create_and_add_node() is performed Before the
line no. 10 of the create_and_add_node() is performed

53 / 82

Doubly Linked List
Adding At The Front

preceding (null)

new_node data

null

next

node list_pointer

data

previous

next

Before the line no. 8 of the create_and_add_node() is performed Before the
line no. 11 of the create_and_add_node() is performed

53 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Adding At The Front

preceding (null)

new_node data

null

next

node list_pointer

data

previous

next

Before the line no. 8 of the create_and_add_node() is performed After the
line no. 11 of the create_and_add_node() is performed

53 / 82

Doubly Linked List
Adding Inside

If the new node should be added inside the list, then after the while loop
in the add_node() function stops, the preceding pointer stores the ad-
dress of the node after which the new one should be inserted, and the
node parameter stores the address of the next member of this node. The
create_and_add_node() function, after it creates the new node and as-
signs to it the number, stores in the next member of the new node the
address of the node that is pointed by the next member, which address is
stored in the node parameter (line no. 7). Please notice, that the latter
next member belongs to the node pointed by the preceding pointer.

54 / 82

Doubly Linked List
Adding Inside

Then, the function assigns to the previous member of the new node the
value from the preceding pointer, that is the address of a node that should
precede the new one in the list (line no. 8). Next, it verifies that there is
a node that should succeed the new one in the list (line no. 9) and stores
in its previous member the address of the new node (line no. 10). The
same address is also stored in the next member of the node pointed by
the preceding pointer. Therefore, the new node is correctly added to the
list and the function exits returning 0.

55 / 82

Doubly Linked List
Adding Inside

node

next

previous

data

next

previous

datanew_node

preceding

next

previous

data

Before the line no. 7 of the create_and_add_node() is performed

56 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Adding Inside

node

next

previous

data

next

previous

datanew_node

preceding

next

previous

data

Before the line no. 8 of the create_and_add_node() is performed

56 / 82

Doubly Linked List
Adding Inside

node

next

previous

data

next

previous

datanew_node

preceding

next

previous

data

Before the line no. 10 of the create_and_add_node() is performed

56 / 82

Doubly Linked List
Adding Inside

node

next

previous

data

next

previous

datanew_node

preceding

next

previous

data

Before the line no. 11 of the create_and_add_node() is performed

56 / 82

Doubly Linked List
Adding Inside

node

next

previous

data

next

previous

datanew_node

preceding

next

previous

data

After the line no. 11 of the create_and_add_node() is performed

56 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Adding At The End

In case where the new node is added at the end of the list, after the
while loop in the add_node() function stops, the preceding pointer stores
the address of the last node in the list, and the node parameter stores
the address of the node’s next member. The create_and_add_node()
function, after it creates the new node and assigns to its data member the
number passed by the number parameter, stores in the next of the new
node the null value, because it is the value of the node’s next member,
which address is stored in the node parameter (line no. 7). Next, in the
previous member of the new node, the function stores the address of the
node pointed by the preceding pointer (line no. 8). The condition in the
line no. 9 is not met, because the new node doesn’t have successor in the
list. It is the last node in the list. The function performs the statement in
the line no. 11, storing the address of the new node in the next member
of the node pointed by the preceding pointer.

57 / 82

Doubly Linked List
Adding At The End

node

null

previous

data

preceding

new_node

next

previous

data

Before the line no. 7 of the create_and_add_node() is performed

58 / 82

Doubly Linked List
Adding At The End

node

null

previous

data

preceding

new_node

null

previous

data

Before the line no. 8 of the create_and_add_node() is performed

58 / 82

Doubly Linked List
Adding At The End

node

null

previous

data

preceding

new_node

null

previous

data

Before the line no. 11 of the create_and_add_node() is performed

58 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Adding At The End

node

next

previous

data

preceding

new_node

null

previous

data

After the line no. 11 of the create_and_add_node() is performed

58 / 82

Doubly Linked List
The delete_node() Function

1 void delete_node(struct list_node **node, int number)
2 {
3 while(*node && (*node)->data != number)
4 node = &(*node)->next;
5 if(*node) {
6 struct list_node *temporary = (*node)->next;
7 if((*node)->next)
8 (*node)->next->previous = (*node)->previous;
9 free(*node);

10 *node = temporary;
11 }
12 }

59 / 82

Doubly Linked List
The delete_node() Function

The version of the delete_node() function for the doubly linked list has
to take into account that the nodes, that potentially are neighbours of
the node that should be deleted, have the previous member. Thus it
has an additional conditional statement (lines no 7–8), compared to its
equivalent for the singly linked list, that checks if there is a successor of
the deleted node. If it is so, the function stores in the previous member
of this successor the address of the node that precedes the deleted one in
the list. Thanks to the additional operations, the latter node is correctly
excluded from the list and can be safely removed.
Let’s analyse how the function works for the same cases that has been
considered in the case of its equivalent for the singly linked list.

60 / 82

Doubly Linked List
Deleting The First Node

In the case where the first node in the list should be removed, after
the while loop stops, the node parameter points to the list pointer (the
list_pointer variable), which stores the address of the first node in the
list. The function stores in the temporary variable the address of the sec-
ond node in the list (or the null value, if it doesn’t exist), which it takes
from the next member of the first node (line no. 6). Then it checks, if that
node actually exists (line no. 7), and if it is so, it assigns to its previous
member the address that is stored in the member of the same name, but
belonging to the first node. In this case it is the null value. In the line
no. 9 the function releases the memory allocated for the first node, and in
the line no. 10 it assigns to the list pointer, which is pointer by the node
parameter, the address of the node that was the second one and now is
the first one in the list. Please notice, that the delete_node() function
also handles correctly the case where the first node is at the same time the
only node in the list.

61 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Deleting The First Node

data

null

next

node list_pointer

data

previous

next

Before the line no. 6 of the delete_node() function is performed

62 / 82

Doubly Linked List
Deleting The First Node

data

null

next

node list_pointer temporary

data

previous

next

Before the line no. 8 of the delete_node() function is performed

62 / 82

Doubly Linked List
Deleting The First Node

data

null

next

node list_pointer temporary

data

null

next

Before the line no. 9 of the delete_node() function is performed

62 / 82

Doubly Linked List
Deleting The First Node

data

null

next

node list_pointer temporary

data

null

next

Before the line no. 10 of the delete_node() function is performed

62 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Deleting The First Node

data

null

next

node list_pointer temporary

data

null

next

After the line no. 10 of the delete_node() function is performed

62 / 82

Doubly Linked List
Deleting an Inner Node

Removing a node that is located between two other nodes in the list is the
most complicated case. In such a situation, after the while loop stops,
the node parameter points to the next member that stores the address
of the node to be deleted. The delete_node() function assigns to the
temporary pointer the address of the node that succeeds in the list the
one that should be deleted (line no. 6). It takes the address from the
next field of the latter. Then, after checking if successor exists (line no.
7) the function assigns to its previous member the address that is stored
in the member of the same name, but belonging to the node that should
be deleted (line no. 8). After that the function releases the memory
allocated for the latter node (line no. 9) and in the next member of its
former predecessor stores the address of its former successor (line no. 10).
It takes this address from the temporary variable. This ends this entire
operation.

63 / 82

Doubly Linked List
Deleting an Inner Node

node

data

previous

next

data

previous

next

data

previous

next

temporary

Before the line no. 6 of the delete_node() function is performed

64 / 82

Doubly Linked List
Deleting an Inner Node

node

data

previous

next

data

previous

next

data

previous

next

temporary

Before the line no. 8 of the delete_node() function is performed

64 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Deleting an Inner Node

node

data

previous

next

data

previous

next

data

previous

next

temporary

Before the line no. 9 of the delete_node() function is performed

64 / 82

Doubly Linked List
Deleting an Inner Node

node

data

previous

next

data

previous

next

data

previous

next

temporary

Before the line no. 10 of the delete_node() function is performed

64 / 82

Doubly Linked List
Deleting an Inner Node

node

data

previous

next

data

previous

next

data

previous

next

temporary

After the line no. 10 of the delete_node() function is performed

64 / 82

Doubly Linked List
Deleting The Last Node

The operation of removing the last node is performed in the same way as
in the case of the singly linked list, so its description is skipped here, but
the next slide illustrated how it is carried out.

65 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
Deleting The Last Node

data

previous

next

data

previous

null

nodenode

temporary (null)

Before the line no. 6 of the delete_node() function is performed

66 / 82

Doubly Linked List
Deleting The Last Node

data

previous

next

data

previous

null

nodenode

temporary (null)

Before the line no. 9 of the delete_node() function is performed

66 / 82

Doubly Linked List
Deleting The Last Node

data

previous

next

data

previous

null

nodenode

temporary (null)

Before the line no. 10 of the delete_node() function is performed

66 / 82

Doubly Linked List
Deleting The Last Node

data

previous

data

previous

null

node

null

node

temporary (null)

After the line no. 10 of the delete_node() function is performed

66 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
The print_list() Function

1 void print_list(struct list_node *node)
2 {
3 while(node) {
4 printf("%d ", node->data);
5 node = node->next;
6 }
7 puts("");
8 }

67 / 82

Doubly Linked List
The print_list() Function

The print_list() function is implemented in the same way as in the
program that uses the singly linked list, therefore it is not described here.

68 / 82

Doubly Linked List
The print_backwards() Function

1 void print_backwards(struct list_node *node)
2 {
3 while(node && node->next)
4 node = node->next;
5 while (node) {
6 printf("%d ", node->data);
7 node = node->previous;
8 }
9 puts("");

10 }

69 / 82

Doubly Linked List
Funkcja print_backwards()

The doubly linked list has a structure that allows the program to traverse
it in two directions: from the first to the last node and from the last one
to the first one. The print_backwards() function uses this feature. The
first while loop (lines no. 3–4) in its body is performed until the node
parameter points to the last node in the list (it is that node, which next
member has the value of null). Then, the second while loop (nodes no.
5–8) traverses the list until the node parameter becomes null. In this loop
the number stored in the node currently pointed by the node parameter is
displayed (node no. 6) and the address in the node parameter is replaced
by the address that is stored in the previous member of the node that
is currently pointed by this parameter (line no. 7). In other words, the
pointer is ”moved” to the predecessor of this node. Thanks to that, the
print_backwards() function displays numbers stored in the list in the
reversed order.

70 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
The remove_list() Function

1 void remove_list(struct list_node **node)
2 {
3 while(*node) {
4 struct list_node *temporary = (*node)->next;
5 free(*node);
6 *node = temporary;
7 }
8 }

71 / 82

Doubly Linked List
The remove_list() Function

The remove_list() function is implemented in the same way as in the
program that uses the singly linked list, therefore it is not described here.

72 / 82

Doubly Linked List
The main(), part 1

1 int main(void)
2 {
3 for(int i=1; i<5; i++)
4 if(add_node(&list_pointer,i)==-1)
5 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",i);↪Ï

6 for(int i=6; i<10; i++)
7 if(add_node(&list_pointer,i)==-1)
8 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",i);↪Ï

9 print_list(list_pointer);
10 print_backwards(list_pointer);

73 / 82

Doubly Linked List
The main(), part 2

1 if(add_node(&list_pointer,0)==-1)
2 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",0);↪Ï

3 print_list(list_pointer);
4 print_backwards(list_pointer);
5 if(add_node(&list_pointer,5)==-1)
6 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",5);↪Ï

7 print_list(list_pointer);
8 print_backwards(list_pointer);
9 if(add_node(&list_pointer,7)==-1)

10 fprintf(stderr,"Error adding a node with the %d
number to the list!\n",7);↪Ï

11 print_list(list_pointer);
12 print_backwards(list_pointer);

74 / 82

Notes

Notes

Notes

Notes

Doubly Linked List
The main(), part 3

1 if(add_node(&list_pointer,10)==-1)
2 fprintf(stderr,"Error adding a node with the %d

number to the list!\n",10);↪Ï

3 print_list(list_pointer);
4 print_backwards(list_pointer);
5 puts("");
6 delete_node(&list_pointer,0);
7 print_list(list_pointer);
8 print_backwards(list_pointer);
9 delete_node(&list_pointer,1);

10 print_list(list_pointer);
11 print_backwards(list_pointer);
12 delete_node(&list_pointer,1);
13 print_list(list_pointer);
14 print_backwards(list_pointer);

75 / 82

Doubly Linked List
The main(), part 4

1 delete_node(&list_pointer,4);
2 print_list(list_pointer);
3 print_backwards(list_pointer);
4 delete_node(&list_pointer,7);
5 print_list(list_pointer);
6 print_backwards(list_pointer);
7 delete_node(&list_pointer,10);
8 print_list(list_pointer);
9 print_backwards(list_pointer);

10 remove_list(&list_pointer);
11 return 0;
12 }

76 / 82

Doubly Linked List
Funkcja main()

The only difference between the main() function and its equivalent in
the program that uses the singly linked list is that in the former one
the print_backwards() is invoked after each call to the print_list()
function. The former function prints on the screen numbers stored in the
list, in the reversed order, thus verifying if the list is coherent.

77 / 82

Summary

In the presented functions, like in add_node() or delete_node(), complex
expressions created with the use of the pointers are applied. The next slide
shows equally complicated expressions of this kind. These are related to
the list in the upper part of the slide. The node pointer, which is present
at the beginning of every such an expression, is also shown in the figure.
Please try to evaluate each of the expressions.

78 / 82

Notes

Notes

Notes

Notes

Summary

next

null
5

next

previous

4

next

previous

9

next

previous

1

next

previous

3

null

previous

2

node

Expression no. 1
node->next->next->data

79 / 82

Summary

next

null
5

next

previous

4

next

previous

9

next

previous

1

next

previous

3

null

previous

2

node

Expression no. 1
node->next->next->data

Answer no. 1
2

79 / 82

Summary

next

null
5

next

previous

4

next

previous

9

next

previous

1

next

previous

3

null

previous

2

node

Expression no. 2
node->previous->previous->previous->data

79 / 82

Summary

next

null
5

next

previous

4

next

previous

9

next

previous

1

next

previous

3

null

previous

2

node

Expression no. 2
node->previous->previous->previous->data

Answer no. 2
5

79 / 82

Notes

Notes

Notes

Notes

Summary

next

null
5

next

previous

4

next

previous

9

next

previous

1

next

previous

3

null

previous

2

node

Expression no. 3
node->next->next->previous->previous->previous->previous->data

79 / 82

Summary

next

null
5

next

previous

4

next

previous

9

next

previous

1

next

previous

3

null

previous

2

node

Expression no. 3
node->next->next->previous->previous->previous->previous->data

Answer no. 3
4

79 / 82

Summary

The rule for reading such expressions is quite simple — follow the pointers.
It is worth to take a closer look at the last expression, where the previous
and next pointers are used together. Those pointers “cancel out” each
other, so the expression can be abbreviated to node->previous->previous->data.
The conclusion from studding such complex pointer expressions is as fol-
lows: Every programmer should know how to read such expressions and
what they mean, but she or he should avoid using them in programs .

80 / 82

Questions

?

81 / 82

Notes

Notes

Notes

Notes

The End

Thank You For Your Attention!

82 / 82

Notes

Notes

Notes

Notes

	Introduction
	Singly Linked List
	Doubly Linked List
	The End

