
Fundamentals of Programming 2
Pointers and Dynamically Allocated Variables

Arkadiusz Chrobot

Department of Information Systems

March 13, 2025

1 / 59

Outline

Pointers To Pointers

Function Pointers

Dynamically Allocated Variables

How To Read Complicated C Declarations?

2 / 59

Pointers To Pointers

Recall that a pointer is a variable that can store an address of another
variable. In the C language, it is possible to define a pointer that points
to another pointer. Such a pointer is called a pointer to a pointer1. Its
declaration follows the schema given below:

data_type **pointer_to_pointer;
The double asterisk means that it is a pointer that stores an address of
another pointer. If there was another asterisk, then it would mean that
this is a pointer to a pointer to a pointer. The number of asterisks in
the pointer declaration determines its level or the level of indirection.
The C language standard specifies that compilers should be able to
handle at least up to 12 levels of pointers, but in most programs at
most two or three levels are used.
The pointer to a pointer can be declared as a global or local variable
or a function parameter.

1Some sources refer to it as a double pointer, but the name is quite confusing.
3 / 59

Pointers To Pointers
Example

#include<stdio.h>

void display(int **pointer)
{
printf("Address in the pointer to pointer: %p\n",pointer);
printf("Address in the pointer : %p\n",*pointer);
printf("Value in the variable: %d\n",**pointer);

}

4 / 59

Notes

Notes

Notes

Notes

Pointers To Pointers
Example

1 int main(void)
2 {
3 int first_variable = 5;
4 int second_variable = 6;
5 int *first_pointer = &first_variable;
6 int *second_pointer = &second_variable;
7 int **pointer_to_pointer = &first_pointer;
8 display(pointer_to_pointer);
9 pointer_to_pointer = &second_pointer;

10 display(pointer_to_pointer);
11 return 0;
12 }

5 / 59

Pointers To Pointers
Example — Comment

The program from the previous slides demonstrates how the pointer to
a pointer works. The display() function has a parameter that is a
pointer to a pointer, and accepts arguments of the same type. First, it
prints the address stored in the parameter. This is an address of another
pointer. Then it prints the address stored in the other pointer. To get
this, it dereferences the parameter only once. Finally, the function
dereferences the parameter twice, to print the value of the variable
pointed by a pointer that in turn is pointed by the parameter.
In the main() function, two variables of the int type are declared
and two pointers of the same type. The variables are initialized with
numbers 5 and 6 respectively, and the pointers with the addresses of
these variables. Finally, a pointer to a pointer is declared that initially
points to the first pointer, and the display() function is invoked with
the former pointer as an argument.

6 / 59

Pointers To Pointers
Example — Comment

After that, the pointer to a pointer is redirected to the second pointer,
and the display() function is called once more. This time it prints
different data. The figure illustrates how the program works:

pointer_to_pointer

first_pointer first_variable

second_pointer second_variable

7 / 59

Pointers To Pointers
Example — Comment

After that, the pointer to a pointer is redirected to the second pointer,
and the display() function is called once more. This time it prints
different data. The figure illustrates how the program works:

pointer_to_pointer

first_pointer first_variable

second_pointer second_variable

7 / 59

Notes

Notes

Notes

Notes

Function Pointers

Functions just like data are stored in cells of the ram. Hence, just
like regular data functions may be pointed by pointers and also can be
invoked. Even these functions that take arguments. Function pointers
have to have a specific data type. For example if a function doesn’t
return any value (or in other words: returns void) and doesn’t take any
arguments, then the function pointer should be declared as follows:

void (*function_pointer)(void);
Please notice how the parentheses are used. Without them the decla-
ration would describe a prototype (header) of a function that takes no
arguments and returns a pointer of an unspecified type. The pointer
to a function that takes two arguments of int type and returns a value
of the same type could be declared in the following way:

int (*another_function_pointer)(int, int);

8 / 59

Function Pointers

The declarations of function pointers can be even more complicated.
The topic will be discussed at the end of the lecture. It is possible
to create structures and unions with fields that are function pointers
or arrays with elements that are such pointers. In the next slides two
example programs are presented that show how to use the function
pointers declared in the previous slide.

9 / 59

Function Pointer
Example — Simple Function Pointer

#include<stdio.h>

void say_hello(void)
{

puts("Hello there!");
}

int main(void)
{

void (*function_pointer)(void) = 0;
function_pointer = say_hello;
function_pointer();
return 0;

}

10 / 59

Function Pointers
Example — Comment

In the program from the previous slide, the say_hello() function is
declared that takes no arguments and returns no value. In the main()
function of the program, a pointer to the aforementioned function is
declared. It is a local pointer, thus it is initialized with 0 in the place of
its declaration. Lack of initialization for such a pointer is not signaled
by the compiler, but it may have dangerous consequences during the
program run. Thus its initialization is always recommended. In the
next line of the main() function a curious assignment is made. Literally
it can be interpreted as assigning the function name to a pointer. In
reality, the name of a function in the C language is (almost) equivalent
to a pointer, just like in the case of an array. So, in that line the address
of the say_hello() function is assigned to the function pointer. The
code of the program can be made a little shorter by replacing the two
described lines of the main() function with the following one:

void (*function_pointer)(void) = say_hello;

11 / 59

Notes

Notes

Notes

Notes

Function Pointers
Examples — Comment (Continued)

The statement in the next line looks like an invocation of the function,
but with the pointer name used instead of the function name. Indeed, in
the line the function is called, but indirectly, with the use of the pointer
variable that points to the function. The parentheses () placed behind
the pointer are the function call operator. It orders the computer to
activate the function. If the function needed arguments then their list
would be put in these parentheses, as it is shown in the next program.

12 / 59

Function Pointers
Example — More Advanced Function Pointer

#include<stdio.h>

int add_up(int first, int second)
{

return first+second;
}

int main(void)
{

int (*another_function_pointer)(int, int) = NULL;
another_function_pointer = add_up;
printf("Adding %d to %d gets %d.\n",3,2,

another_function_pointer(3,2));
return 0;

}

13 / 59

Function Pointers
Example — Comment

In the program from the previous slide a more advanced function is
defined that takes two numbers as arguments and returns their sum.
A pointer to such a function is declared and initialized in the main()
function. This time it is assigned the value of the null, to show that
it also can be applied in such a case. In the next line the pointer is
assigned the address of the add_up() function. Like in the previous
example, these two lines can be replaced by the following one:

int (*another_function_pointer)(int, int) = add_up;
The add_up() function has two parameters, thus when it is invoked
two arguments have to be passed to it. The same has to be done when
it is invoked with the use of the pointer. In the case of the program
these arguments are two numbers: 3 and 2. Please note, that the value
returned by the function is an argument of the printf() function call,
that displays the result on the screen.

14 / 59

Function Pointers
Usage In The C Standard Library

Function pointers are quite often used in functions available in the C
standard library. For example, the qsort() function that sorts an array
using the Quick Sort algorithm (a very efficient algorithm for sorting
arrays) as one of its parameters has a function pointer. The argument
passed by this pointer is an address of a function that compares values
of two elements of the array. The program, in the next slides, shows
how to use the qsort() function to sort an array of integers.

15 / 59

Notes

Notes

Notes

Notes

Function Pointers
The qsort() Function Usage

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#define LENGTH 20

void populate(int array[], unsigned int length)
{

srand(time(0));
for(int i=0; i<length; i++)

array[i]=-10+rand()%21;
}

16 / 59

Function Pointers
The qsort() Function Usage — Comment

In the program are included three header files. The first one is the
stdio.h, because the program displays messages on the screen using
the printf() function. It also uses the prng, that’s why the two
other header files are included. There is however an additional reason
for including the stdlib.h file — the qsort() function is declared
there.
The function populate() fills an array, passed as its first argument,
with randomly chosen integers ranging from −10 to 10 (inclusive). The
array’s number of elements is passed as the second argument of the
function.

17 / 59

Function Pointers
The qsort() Function Usage

void print(int array[], unsigned int length)
{

for(int i=0; i<length; i++)
printf("%d ",array[i]);

puts("");
}

int compare(const void *first, const void *second)
{

return *(int *)first - *(int *)second;
}

18 / 59

Function Pointers
The qsort() Function Usage — Comment

The print() function displays the content of an array of integers,
passed as its first argument. The array’s number of elements is passed
as the second argument of the function.
The compare() function is invoked by the qsort() function to compare
values of two elements of the array. It has to return a negative number,
if the value of the first element is less than the value of the second
element. In case the value of the first element is greater than the value
of the second, it has to return a positive number. If the values of both
elements are equal, the function should return zero.
In order to be able to sort an array of any type, the qsort() function
gets the array by a parameter that is a pointer of the void * type. It
also passes to the compare() function two pointers of the same type,
that point to elements of the array that values need to be compared.

19 / 59

Notes

Notes

Notes

Notes

Function Pointers
The qsort() Function Usage — Comment

The compare() function first casts the pointer parameters to the int
* type, then it dereferences the pointers and subtracts the two numbers
stored in elements of the array pointed by these pointers. The result is
the number expected by the qsort() function and thus it is returned.

20 / 59

Function Pointers
The qsort() Function Usage

int main(void)
{

int numbers[LENGTH];
populate(numbers,LENGTH);
print(numbers,LENGTH);
qsort(numbers,LENGTH,sizeof(numbers[0]),compare);
print(numbers,LENGTH);
return 0;

}

21 / 59

Function Pointers
The qsort() Function Usage — Comment

In the main() function, an array of 20 elements is created and then
populated with random numbers. Next, the content of the array is
printed on the screen and the qsort() function is invoked in order to
sort the array. The function takes as the first argument the array, as
the second the number of elements in the array, and as a third the
size of a single array’s element. The last argument of this function is
the address of the compare() function, or in other words, the pointer
to that function. As it was mentioned before, in the C language, the
name of the function is also a pointer to the function. After the array
is sorted by qsort() its content is once again displayed.
Functions, whose addresses are passed to other functions, are sometimes
referred to as callback functions or simply callbacks. For example, the
qsort() function invokes compare() when it is itself invoked.

22 / 59

Dynamically Allocated Variables

The pointers play one more important role in programming. They
allow using dynamically allocated variables. Before this term will be
explained, let’s review the information about the scope of variables:
▶ global variables — created in the data area of the program’s mem-

ory; exist through the whole life cycle of the program; initialized
by default with the zero value.

▶ local variables — also called automatic variables; associated with
functions; created on the call stack (an area of program memory)
when the function is called; are a part of an activation record
(a stack frame); not initialized by default; cease to exist when
the function terminates; their scope depends on the place of their
declaration.

23 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables

The dynamically allocated variables have some properties of both of the
kinds described in the previous slide. The programmer decides about
their scope and life cycle. Hence the name — they are created and
destroyed when the program is running. These variables are created
in an area of the program memory that is called a heap, with the use
of dedicated subroutines that are standard elements of a programming
language. In case of the C language they are functions and are described
in the next slides. The subroutines that create dynamically allocated
variables allow the programmer to specify the size of the variable or in
other words the number of memory cells that constitute the variable,
but they do not allow her or him to give it a name. These subroutines
return the address of the new variable, which can be stored in a pointer.
Thus the pointer becomes the only link between the variable and the
rest of the program. After such an assignment the dynamically allo-
cated variable becomes a pointed variable. Additionally, if the pointer
is of a specific type, it also determines the type of the dynamically al-
located variable.

24 / 59

Dynamically Allocated Variables

It is possible to point a single dynamically allocated variable with sev-
eral pointers. This allows for interpreting the same data stored in the
variable in different ways. However, this is a complicated case and
won’t be further discussed in the lecture. The operation of creating a
dynamically allocated variable boils down to making a reservation of a
continuous area of memory for the variable in the heap and it is called
an allocation. It is not a trivial operation and it can fail. The way
the allocation is done depends on the computer and operating system
internal workings, but the details won’t be discussed in the lecture.
However, it has to be stated, that all allocated memory on the heap
must be freed when the dynamically allocated variables are no longer
used or before the program terminates. The operation of freeing the
memory is carried out with the use of other subroutines, which mark
the allocated memory as free, i.e. ready to be used for other dynami-
cally allocated variables. Freeing memory is also called a deallocation
of a variable and is equivalent to destroying it.

25 / 59

Dynamically Allocated Variables
Heap Handling Functions in the C Language

There are four functions in the C language responsible for managing
(allocating and freeing) the heap. They are described in tables in this
and following slides.

Function Name Description
malloc() The function takes only one argument, that is an

expression defining the size (in bytes) of the mem-
ory area which is to be allocated in the heap. The
returned value is of the void * type and it is the
address of the first memory cell in the group of
cells that belong to the allocated area. This ad-
dress is called the address of the dynamically allo-
cated variable (memory area) or a pointer to the
dynamically allocated variable (memory area). If
the function fails to allocate memory, it returns
the null value. The allocated memory is unini-
tialized.

26 / 59

Dynamically Allocated Variables
Heap Handling Functions in the C Language

Function Name Description
calloc() This is actually a form of the malloc() func-

tion, which is designed to simplify the allocation
of memory for arrays. It takes two arguments.
The first one is the number of elements of the dy-
namically allocated array and the second one is
the size of a single element. The array is initial-
ized with zeros.

27 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables
Heap Handling Functions in the C Language

Function Name Description
free() The function is responsible for freeing the memory.

It returns no value, but takes the pointer to the
memory to be freed as its argument. The memory
should be previously allocated by one of three func-
tions that can do it, otherwise a serious exception
may occur and the program may be aborted. If an
empty pointer is passed to the function, it will take
no actions. It should be noticed, that the function
doesn’t zero out the memory area that it deallocates,
it just marks it as free. The data stored inside the
area still exists, but they mustn’t be accessed. The
function also doesn’t zero out the passed pointer and
as long as it is not assigned a new address it mustn’t
be used. In Computer Science jargon such a pointer
is called a dangling pointer.

28 / 59

Dynamically Allocated Variables
Heap Handling Functions in the C Language

Function Name Description
realloc() The function modifies the size of the allocated memory

area in the heap. It takes two arguments. The first one
is the pointer to that area, and the second one is the new
size expressed in bytes. The function returns an address
of the modified memory area (the value of the void *
type) or null if it fails. The returned address may be dif-
ferent from the passed address, in case the function has
to overcome obstacles in resizing the area by copying the
data stored in it to another memory area. If the memory
area is expanded, the data inside it are preserved. How-
ever, if the area is shrunk, a data loss may occur. If an
empty pointer is passed to the function it will behave like
the malloc() function and if the new size is set to 0 the
function will behave like the free() function.

29 / 59

Dynamically Allocated Variables

All the functions described in tables are declared in the stdlib.h
header file. Declarations of two other useful functions are in the string.h
header file. The first function has already been introduced. It is the
memset() function that assignd a specified value to a memory area
pointed by a pointer. It takes three arguments. The first one is the
pointer (of the void * type) to the memory area, the second one is the
value (of the int type) to be stored in the area and the last argument
is the size of the area expressed in bytes. The memset() function re-
turns the void * pointer to the area that now stores the value. The
second useful function is the memcpy(), which copyies the content of
one memory area to another. It takes three arguments. The first one
is a pointer to the destination area and the second one is the pointer
to the source area. Both of them are of the void * type. The last
argument is the size of data to be copyied. The function returns the
pointer (of the void * type) to the destination area.

30 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Variable of int Type

#include<stdio.h>
#include<stdlib.h>

int main(void)
{

int *variable = (int *)malloc(sizeof(int));
if(variable) {

printf("The address of the dynamically allocated variable:\
%p\n",variable);

*variable = 24;
printf("The value of the dynamically allocated variable:\

%d\n",*variable);
free(variable);
variable=NULL;

}
return 0;

}

31 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables
Example — Dynamically Allocated Variables of int Type

In the previous slide a simple, not split into functions, program is pre-
sented that uses a dynamically allocated variable of the int type. The
variable is created by invoking the malloc() function. The size of the
variable is calculated with the use of sizeof operator applied to the
int type. The value (the address) returned by the malloc() function
is cast to the int * type and stored in the pointer named variable.
After the program checks if the memory allocation was successful, the
address stored in that pointer is displayed on the screen and then a
number 24 is stored in the dynamically allocated variable. Next, the
value of the variable is displayed on the screen. After completing all the
operations, the program deallocates the dynamically allocated variable
using the free() function and assigns the null constant value to the
pointer. No operation can be carried out with the use of dynamically
allocated variable until the program makes sure that the allocation op-
eration was completed successfully.

32 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

The program that uses a dynamically allocated variable of the int type
doesn’t show the full potential of these variables. The next program
creates a resizeable array of integers. The number of elements in the
array is not known before running of the program. It is incremented
during the runtime to store new values.

33 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

34 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

In the program are included three header files: stdio.h, stdlib.h
and time.h. The program not only displays messages on the screen
and uses a dynamically allocated array, but also applies the prng.

35 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables
Example — Dynamically Allocated Array

int *add_element(int *array, int index, int value)
{

static unsigned int length;
const unsigned int DELTA = 10;
if(index>=length) {

length += DELTA;
int *new_array = realloc(array, length * sizeof(int));
if(new_array)

array = new_array;
}
if(array)

array[index]=value;
return array;

}

36 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

The add_element() function is responsible for adding a new value to
the array. It takes three arguments: the array (more specific — a
pointer to the array), the index of the element and the value itself.
First, it checks if the index is equal or greater than the current num-
ber of elements in the array. This number is stored in a local variable
declared as static, which means that it is not destroyed after the
function terminates, but exists for the entire runtime of the program.
Its initial value is 0. If the condition is met, the function increments
the number of elements by delta, which is defined as a constant of the
value 10, and allocates memory for the array using the realloc() func-
tion. The address returned by realloc() is stored in the new_array
pointer. Because the allocation may fail, the add_element() function
first checks if the new_array pointer is not null before assigning its
content to the array pointer. Finally, the function verifies if the array
pointer is not empty (the first allocation also may have fail). If it is
valid, then the function stores the value in an element specified by the
index and returns the address of the array.

37 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

Please notice, that it is possible to return an address of a variable from
a function. It only requires, aside from using a valid return statement,
declaring the return type of the function as a pointer of a specified type.
It is strictly forbidden to return an address of an automatic local vari-
able, no matter if the address was obtained with the use of the address
operator (&) or by other means. Such a variable ceases to exist when
the function terminates, so that address becomes immediately invalid.
The only local variable which address may be safely returned is a vari-
able declared with the use of the static keyword. The add_element()
function returns the address of a dynamically allocated variable (an ar-
ray), which is only stored in a local pointer. It means that it can be
safely returned from a function.

38 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

void print_array(const int *array,
const unsigned int number_of_values)

{
if(array) {

printf("The number of values in the array is %u\n",
number_of_values);
for (int i = 0; i < number_of_values; i++)

printf("%d ", array[i]);
puts("");

}
}

39 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables
Example — Dynamically Allocated Array

The print_array() function displays the content of the array. It takes
as arguments the pointer to the array and the actual number of values
stored inside the array. Please notice, that the array may have more
elements than it stores values, because each time it is resized ten new
elements are added. Also notice, that the print_array() function
verifies if the pointer to the array is valid before using it. It may have
happened, that the add_element() function entirely failed to create
the array, so the checking is necessary. Besides the values themselves,
the function also prints the number of values stored in the array.

40 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

int main(void)
{

int *array = NULL;
srand(time(0));
unsigned int number_of_values = 1000 + rand()%1001;
for(int i=0; i<number_of_values; i++)

array = add_element(array,i, -5+rand()%26);
print_array(array, number_of_values);
free(array);
return 0;

}

41 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Array

In the main() function, the pointer to the array is initialized with
null, which means that the array initially doesn’t exist. Moreover,
the program chooses (pseudo)randomly the number of values that it
will store in the array. The number may range from 1000 to 2000.
The array is created and populated in the for loop. Each time the
add_element() function determines that there are no more elements
in the array to store another value, it creates 10 more. The number was
selected arbitrary. The greater it is, the more elements could be left
unused. The less it is, the more often the program allocates memory,
which is a time-consuming operation. If the program was to be used for
something serious, then perhaps a different number should be picked.
After the array is filled with numbers, the print_array() function
prints its content and the program releases the memory with the help
of the free() function.

42 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

It is possible to create and use a dynamically allocated matrix (two
dimensional array) with the help of a pointer to a pointer. The next
program allows the user to determine how many rows and columns
such a matrix should have and then it creates the matrix and fills with
pseudorandomly chosen integer numbers ranging from −10 to 10.

43 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

int **create(const int rows, const int columns)
{

int **matrix = (int **)calloc(rows,sizeof(int *));
if(matrix) {

for(int i=0; i<rows; i++)
matrix[i] = (int *)calloc(columns,sizeof(int));

}
return matrix;

}

44 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

The create() function is responsible for allocating the memory for the
matrix. First, it creates an array of pointers of the int * type. The
number of the elements in the array is specified by the value of the
rows parameter. If the operation is successful, then in the for loop the
memory for arrays of integers is allocated. Addresses of these arrays
are stored in the elements of the array of pointers. The number of
elements in each of the arrays of integers is determined by the value of
the columns parameter. Finally, the address of the array of pointers is
returned by the function. Please notice, that the address is stored in
a local pointer to a pointer called matrix and that the function also
returns a pointer to a pointer.

45 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

void fill(int **matrix, const int rows, const int columns)
{

for(int i=0; i<rows; i++)
for(int j=0; j<columns; j++)

matrix[i][j] = -10+rand()%21;
}

void print(int **matrix, const int rows, const int columns)
{

for(int i=0; i<rows; i++) {
for (int j = 0; j < columns; j++)

printf("%4d", matrix[i][j]);
puts("");

}
}

46 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

The fill() function populates a matrix with the randomly selected
integers ranging from −10 to 10 (inclusive) and the print() function
prints its content. Please notice, that the functions are very similar to
the functions that have been defined in the previous semester for iden-
tical operations on “regular” matrices or, to describe them correctly,
statically allocated matrices. The difference is that the functions from
the previous slide get the matrix by a parameter that is a pointer to
a pointer, and that the number of rows and columns is specified by
parameters of that names.

47 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

void release(int **matrix, const int rows)
{

for(int i=0; i<rows; i++)
free(matrix[i]);

free(matrix);
}

48 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

The release() function is responsible for freeing the matrix. First,
it deallocates in the for loop the memory allocated for each of the
arrays of integers. Next, it frees the memory allocated for the array of
pointers.

49 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

int main(void)
{

srand(time(0));
puts("Please specify the number of rows and columns.");
puts("Rows?"); int rows = 0;
scanf("%d",&rows);
puts("Columns?"); int columns=0;
scanf("%d",&columns);
int **matrix = create(rows,columns);
if(matrix) {

fill(matrix,rows,columns);
print(matrix, rows, columns);
release(matrix, rows);

}
return 0;

}

50 / 59

Dynamically Allocated Variables
Example — Dynamically Allocated Matrix

In the main() function, the program asks the user about the number
of rows and columns that the matrix should have. Then the array is
created with the help of the create() function. Next, the program
verifies if the matrix has been successfully created. If so, it populates it
with numbers using the fill() function, then prints its content on the
screen and frees the matrix with the help of the release() function.
If the create() function failed to create the matrix, none of these
operations would be performed.
The program can be improved by modifying the create() function in
such a way, that it checks if each of the integer arrays has been properly
created.

51 / 59

Notes

Notes

Notes

Notes

Dynamically Allocated Variables
Summary

The pointers and dynamically allocated variables may be applied for
building a more complex and advanced data structures, than the arrays
described in the lecture. These structures will be presented soon.

52 / 59

How To Read Complicated C Declarations? 2

Looking at the examples presented in the lecture it is easy to discover
that the variables in the C language may have complicated declarations.
Function pointers are one of the examples. Fortunately, there is a rule
that defines how to read such declarations:

The Rule
Start at the variable name (or innermost construct if no identifier is
present). Look right without jumping over a right parenthesis; say what
you see. Look left again without jumping over a parenthesis; say what
you see. Jump out a level of parentheses if any. Look right; say what
you see. Look left; say what you see. Continue in this manner until
you say the variable type or return type.

2Based on an article by Terence Parr published here: https://parrt.cs.usfca.edu/
doc/how-to-read-C-declarations.html

53 / 59

How To Read Complicated C Declarations?

The next slides contain a few examples of declarations with their de-
scriptions. The names of the variables in examples are one letter long,
to avoid giving away too soon the meaning of the declarations.

54 / 59

How To Read Complicated C Declarations?
Example no. 1

Example
int *a[10];

55 / 59

Notes

Notes

Notes

Notes

https://parrt.cs.usfca.edu/doc/how-to-read-C-declarations.html
https://parrt.cs.usfca.edu/doc/how-to-read-C-declarations.html

How To Read Complicated C Declarations?
Example no. 1

Example
int *a[10];

Answer
The a variable is an array of 10 pointers of the int type.

55 / 59

How To Read Complicated C Declarations?
Example no. 2

Example
int (*x) (int *, int *);

56 / 59

How To Read Complicated C Declarations?
Example no. 2

Example
int (*x) (int *, int *);

Answer
The x variable is a pointer to a function that has two pointer parameters
of the int type and returns a value of the int type.

56 / 59

How To Read Complicated C Declarations?
Example no. 3

Example
int (*(*v)[])();

57 / 59

Notes

Notes

Notes

Notes

How To Read Complicated C Declarations?
Example no. 3

Example
int (*(*v)[])();

Answer
The v variable is a pointer to an array of pointers to functions that
take an unspecified number of arguments and return a value of the int
type.

57 / 59

Questions

?

58 / 59

The End

Thank You For Your
Attention!

59 / 59

Notes

Notes

Notes

Notes

	Pointers To Pointers
	Function Pointers
	Dynamically Allocated Variables
	How To Read Complicated C Declarations?
	The End

