
Fundamentals of Programming 1
Structures and Unions

Arkadiusz Chrobot

Department of Information Systems

December 20, 2024

1 / 57



Outline

1 Structures

2 Unions

3 Bit Fields

4 Structures, Unions and Functions

5 Examples

2 / 57



Structures

Structures
The structure in the C language is a data structure that makes it pos-
sible to store values of different types in a single variable. In other
programming languages such data structures are called records. To ap-
ply a structure in a program it is necessary to define its type first. The
overall pattern of such a definition is as follows:

struct name_of_the_structure_type
{

field_type field_name_1;
field_type field_name_2;
...
field_type field_name_n;

};
Fields (or members) inside the structure are declared in the same way
as regular variables and they can be of any data type including an array,
another structure and a union. The last data type will be introduced in
this lecture.

3 / 57



Structures

Structures
Variables

To declare a variable of a structure type it is necessary to use the struct
keyword before the name of the structure type, just as in the following
pattern:

struct name_of_structure_type name_of_variable;
It is also possible to declare a structure variable together with the struc-
ture type:

struct name_of_the_structure_type
{

field_type field_name_1;
...
field_type field_name_n;

} name_of_variable_1, name_of_variable_2;

There are two variables declared in the pattern above. If only one was
necessary then its name would be placed between the closing brace and
the semicolon. 4 / 57



Structures

Structures
Examples of Structured Types and Variables

Structures have many applications. They are used for gathering data of
different types, but some common characteristics. They can for example
store personal data:
struct personal_data
{

char name[LENGTH], surname[LENGTH];
unsigned char age, height, weight;

};
Variables of struct personal_data type can store such data as a name,
surname, age, height and weight of a specific person. Please observe, that
just like in the case of regular variables it is possible to declare several
fields of the same type just by placing the name of the type first and
then by giving the names of the variables, separating them with commas
and putting at the end a semicolon.

5 / 57



Structures

Structures
Examples of Structured Types and Variables

Structures can also by applied for storing some number of values of the
same type that have a special meaning in the problem to be solved. For
example, a structure can store coordinates of a point in three dimensional
space:
struct coordinates
{

double x,y,z;
} point;

6 / 57



Structures

Structures
Nested Structures

As it was mentioned before, the C language allows for nesting structures.
For example, the struct personal_data structure can be supplemented
with a field, for storing the address of a person, which itself is a structure
of the struct address type:
struct personal_data {

char name[LENGTH], surname[LENGTH];
unsigned char age, height, weight;
struct address {

char street_name[LENGTH], postal_code[LENGTH];
unsigned short int house_number;

} personal_address;
};

7 / 57



Structures

Structures
Arrays of Structures

The C language makes it possible to create arrays of structures. For ex-
ample an array of structures of the struct personal_data type defined
in previous slide may be declared as follows:
struct personal_data people[NUMBER_OF_ELEMENTS];

It is assumed that the NUMBER_OF_ELEMENTS constant specifies the num-
ber of the array’s elements and that it is defined before the array dec-
laration. The array of structures can also be created at the place of
structure type definition, just like a regular variable.

8 / 57



Structures

Structures
Accessing Fields

A structure member can be accessed by prefixing its name with the name
of the variable in which it is embedded and separating those two names
with a dot, just like in the following pattern:

name_of_variable.name_of_field
For example a value to the x filed of the point structure can be assigned
like this:
point.x = 3;

Referencing a field in a nested structure requires using the dot more than
once:
person.personal_address.house_number = 127;

If the structure is an element of an array, then the name of the variable
in the pattern has to be replaced with the reference to a specific element
of the array:
people[0].age = 37; 9 / 57



Structures

Structures
Initialization of Structures

The variables of a structural type may be declared as global or local.
The former are by default initialized with zeros, whereas the latter are
uninitialized and the programmer is responsible for assigning them ini-
tial values. There are also cases when other than default values should
be assigned to a global structure. At least three ways of initializing a
structure exist.

10 / 57



Structures

Structures
Initialization of Structures — the First Method

The variable of a structural type may be initialized in the place of its
declaration, similarly to an array – the values for the fields have to be
embraced with braces and separated by commas:
#include <stdio.h>

struct coordinates
{

double x, y, z;
} point = {1.0, 2.0, 3.0};

int main(void)
{

struct coordinates another_point = {4.0, 5.0, 6.0};
printf("x: %f ",another_point.x);
printf("y: %f ", another_point.y);
printf("z: %f\n", another_point.z);
return 0;

}

11 / 57



Structures

Structures
Initialization of Structures — the First Method

The example in the previous slide shows initialization of two variables
of the struct coordinates type: the point and another_point. The
first variable is declared and initialized in the place where its type is
defined. The x field gets the value of 1.0, the y field, the value of 2.0
and the z, the value of 3.0. The second variable is declared as local and it
is also initialized in the place of its declaration. If one of the initial values
was missing then, according to the C language standard, the third field
would get the value of 0. Neither the scanf() nor the printf() function
has a formatting string suitable for simultaneous reading or displaying
the values of a structure. The value of every structure member has to be
passed to those functions separately, just like in the example program.

12 / 57



Structures

Structures
Initialization of Structures — the Second Method

The second way of initializing structures is similar to the first one, but
involves using names of the members that are to be assigned a value.
They are placed inside brackets and prefixed with a dot, like in the
example program:
#include<stdio.h>

struct coordinates
{

double x, y, z;
} point = {.x=1.0, .z=2.0, .y=3.0};

int main(void)
{

struct coordinates another_point = point;
printf("x: %f ",another_point.x);
printf("y: %f ", another_point.y);
printf("z: %f\n", another_point.z);
return 0;

} 13 / 57



Structures

Structures
Initialization of Structures — the Second Method

Using names of fields explicitly allows initializing them in any order. It
is also possible to initialize only some of them. The rest of them will
be assigned the value of zero. The example program shows also that a
variable of structural type may be assigned a value of another variable of
the same type. As a result of such an assignment the values of the fields
of the variable on the right side of the assignment operator are assigned
to appropriate fields of the variable on the left side of the operator. This
is not possible in the case of structures of different types. It is also not
possible to cast a structure on a different structure type.

14 / 57



Structures

Structures
Initialization of Structures — the Third Method

The last way of initializing a structure consist in assigning values to its
fields outside of the place of declaring the variable:
#include <stdio.h>

struct coordinates
{

double x, y, z;
};

int main(void)
{

struct coordinates point;

point.x = point.y = point.z = 1.0;

printf("x: %f ", point.x);
printf("y: %f ", point.y);
printf("z: %f\n", point.z);
return 0;

} 15 / 57



Structures

Structures
Initialization of Structures — the Third Method

In the example program every field of the point variable gets a value of
1.0. If any of the fields was omitted then its value would depend on the
scope of the structure. The field in a global variable would get a value
of zero. In case of a local variable, its value would be undefined.

16 / 57



Unions

Unions

The union is similar to the structure. The main difference between those
two constructs is that, unlike in the case of the structure, fields in the
union overlap in the memory. It means that they share the same area
of the memory. As a result the union typically occupies less place in the
memory than the structure with the same members and modification of
the value of one of its fields may influence the values of the other fields.

17 / 57



Unions

Unions
Example of a Union

The union type is defined similarly to structure type. Also a union
variable is declared in a similar fashion to a structure variable.
union union_type_example
{

char character;
int integer;
char array[8];

} union_example;

In the listing a union type is defined and a variable of this type is de-
clared. The variable is called a union for short. The size of the union
(the number of bytes it occupies) can be calculated with the use of the
sizeof operator. The results may vary depending on a computer and a
compiler configuration, but usually the union takes less memory than a
corresponding structure.

18 / 57



Unions

Unions
Fields Overlapping

The picture below illustrates overlapping of the fields.

char array[8]int integerchar character

The illustration is for reference only. The way in which the fields overlap
depends on the type and configuration of a computer and a compiler.
However, modification of the value of one of the fields may result in
modification of the value of one or more of the others.

19 / 57



Unions

Unions
Similarities Between Structures and Unions

Not only definitions of types and declarations of variables of structures
and unions are similar. The unions may be initialized in the same way
as structures, but if the first method is used for initializing more than
one field then the compiler will issue a warning, that the resulting values
of the fields may vary from the expected ones.
Using the union or struct keywords while declaring a union or structure
may be inconvenient. This drawback may be removed with the use of
the typedef keyword which allows the programmer to give a different
(usually shorter) name for a type. It should however be used carefully,
because it degrades the legibility of the source code.

20 / 57



Unions

Unions
Applications

Due to fields overlapping unions are often used for converting types
of different values, for example the ip address may be converted from
binary into decimal and vice versa or number can be converted from
decimal into bcd or the other way. The conversion consists in storing a
value in specific fields and reading other union members. However, the C
language standard does not recommend using this technique because the
result of such a conversion depends on the architecture of the computer
system and thus can be in some cases incorrect. The aforementioned
document suggests always reading only the recently modified union field.
Hence, it is better to apply unions as a fields of structures, to save
some memory. This method requires declaring an additional filed in the
structure for signaling which field of the union should be used. Such
usage of a union is shown in a program presented at the end of the
lecture.

21 / 57



Bit Fields

Bit Fields

The C language makes it possible to declare fields of structure which
size is expressed in bits. Those fields are called simply bit fields. The
sizeof operator cannot be applied to such fields. It is also impossible to
assign to them greater or smaller value than it is allowed by their size.
Yet, it does not mean that the overall size of the structure is a sum of
bit fields sizes. A structure that contains only two bit fields of the size
of five bits each has a size of at least two bytes, but not a size of ten
bits. The size of every structure is always a positive integer multiple of
a byte. Bit fields are just a special notation that forces the program to
use only as many bits in the fields as the programmer has specified. As
the type of a bit field should be used any type that allows for storing
integer or natural numbers, like the unsigned char or int. Unions can
also have bit fields, but there are less useful than those in structures.

22 / 57



Bit Fields

Bit Fields
Example of a Structure with Bit Fields

struct bit_field_example
{

int flag:1;
char small_number:2;

};
A single bit is often used as so-called flag, i.e. a variable that stores
information that signals for example an occurrence of an exception. Thus
the field of the “size” of one bit in the structure is named that way.

23 / 57



Structures, Unions and Functions

Structures, Unions and the Functions

Unions and structures can be returned by functions. The listing presents
a source code of a function that returns a structure. A function that
returns a union may be declared similarly.
struct coordinates get_point(double x, double y, double z)
{

struct coordinates point;

point.x = x;
point.y = y;
point.z = z;

return point;
}

24 / 57



Structures, Unions and Functions

Structures, Unions and Functions
The Function Returning a Structure — a Comment To the Example

The function shown in the previous slide stores values passed to it by
parameters in a structure which is declared locally. Next, it returns the
structure. The function may be invoked in the following way:
struct coordinates start = get_point(0.0, 0.0, 0.0);

As a result of the function call the values from its local structure are
stored in the start variable.

25 / 57



Structures, Unions and Functions

Structures, Unions and Functions
Passing By Parameters

Both structures and unions can be declared as parameters of a function.
By default structures and unions are passed by value, just like any other
variable, apart from arrays. If the structure or union parameter should
be also an output parameter, then it has to be declared as a pointer.
Access to the fields of a union or structure passed or just pointed by a
pointer may be gained with the use of one of the two notation. The first
one is less readable and follows the pattern:

(*name_of_pointer_to_structure).field_name
The second one in more legible thanks to the use of a special operator:
-> and thus it is applied more often:

name_of_pointer_to_structure->field_name

26 / 57



Structures, Unions and Functions

Structures, Unions and Functions
Examples

void move(struct coordinates *point,
struct coordinates vector)

{
point->x += vector.x;
point->y += vector.y;
point->z += vector.z;

}

27 / 57



Structures, Unions and Functions

Structures, Unions and Functions
A Comment to the Example

The function from the previous slide determines coordinates of a point
in a three dimensional space after it is shifted by a given vector. The
first parameter points to a structure that before the function call stores
original coordinates of the point, and after the function completes it
stores the resulting coordinates. The structure that describes the vector
is passed to the function by the second parameter. The values of each
of its fields are components of the vector (lengths of the vector in each
of the dimensions). The function adds the corresponding fields of the
two structures and stores the results in the point variable. As a first
argument of the function call should be passed an address of a variable
of the struct coordinates type or a pointer to such a variable. As the
second parameter should be passed a structure of the aforementioned
type. The function may be invoked like this:

move(&start,distance);
28 / 57



Examples

Examples
Array of Structures

A program that stores personal data, such as name, surname and age,
in an array of structures is presented as the first example. The afore-
mentioned data are created with the use of PRNG. The age is chosen
randomly in the range from 1 to 120 and the name and surname are cho-
sen randomly from predefined arrays. There is one array for surnames
and another for first names which contains male and female names.

29 / 57



Examples

Examples
Array of Structures

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<time.h>

#define LENGTH 50
#define NUMBER_OF_PEOPLE 5

enum gender {MALE, FEMALE};

30 / 57



Examples

Examples
Array of Structures — a Comment

The part of the source code presented in the previous slide contains,
besides preprocessor directives that include header files in the program,
definitions of constants. The first one describes how many characters
can store the name and surname arrays. The second one defines the
number of people for whom personal data should be generated. There is
also defined an enumerated type whose elements are used for describing
the gender of a person.

31 / 57



Examples

Examples
Array of Structures

struct name_forms
{

char male_name[LENGTH], female_name[LENGTH];
} names[] = {{.male_name = "Andrew", .female_name = "Anne"},

{.male_name="Edward", .female_name="Katherina"},
{.male_name="Henry", .female_name="Margaret"},
{.male_name="John", .female_name="Barbara"},
{.male_name="Jacob", .female_name="Joanna"}};

char surnames[NUMBER_OF_PEOPLE][LENGTH] = {"Smith", "Brown",
"Green", "White", "Johnson"};

32 / 57



Examples

Examples
Array of Structures — a Comment

The part of the source code from the previous slide contains declarations
and initializations of two arrays: names and surnames. The elements of
the first array are structures of the type struct name_forms. Each of
them stores two names, one for a male and another for a female. The
surnames array is an array of strings which elements store surnames.
The elements of those arrays are chosen randomly with the use of PRNG
in order to create records (structures) of personal information.

33 / 57



Examples

Examples
Array of Structures

struct personal_data
{

char name[LENGTH], surname[LENGTH];
unsigned char age;

} people_data[NUMBER_OF_PEOPLE];

34 / 57



Examples

Examples
Array of Structures — a Comment

The previous slide contains a definition of an array for storing the per-
sonal data. The number of elements of this array is defined by the
constant number_of_people. Each of them is a structure that stores a
name, surname and age of a single person.

35 / 57



Examples

Examples
Array of Structures

struct personal_data get_randomized_data(struct name_forms names[], char surnames[][LENGTH])
{

struct personal_data person;

person.age = 1+rand()%120;
strncpy(person.surname, surnames[rand()%NUMBER_OF_PEOPLE], LENGTH-1);
unsigned char gender = rand()%2;
if(gender==FEMALE)

strncpy(person.name,names[rand()%NUMBER_OF_PEOPLE].female_name,LENGTH-1);
else

strncpy(person.name,names[rand()%NUMBER_OF_PEOPLE].male_name,LENGTH-1);

return person;
}

36 / 57



Examples

Examples
Array of Structures — a Comment

The get_randomized_data() function generates data about a single
person. The arrays with names and surnames are passed to it by pa-
rameters. The function chooses randomly the age of the person as the
first personal data item. Next, it choses randomly an index of a single
element in the surnames array and the value of the element is then cop-
pied to the surname field of the person structure. Then the function
chooses randomly a gender of the person. If it is a female the function
should choose randomly her name from the female names and if it is
a male the function should choose randomly his name from the male
names. The structure with the chosen personal data is returned by the
function.

37 / 57



Examples

Examples
Array of Structures

void fill_array(struct personal_data array[],
struct name_forms names[],
char surnames[][LENGTH])

{
srand(time(0));
int i;
for(i=0;i<NUMBER_OF_PEOPLE;i++)

array[i]=get_randomized_data(names, surnames);
}

38 / 57



Examples

Examples
Array of Structures — a Comment

The fill_array() function initializes the PRNG and assigns to each of
the elements of the array, passed to it by the first parameter, the value
returned by the get_randomized_data() function.

39 / 57



Examples

Examples
Array of Structures

void print_array(struct personal_data array[])
{

int i;
for(i=0;i<NUMBER_OF_PEOPLE;i++) {

printf("Name: %s\n",array[i].name);
printf("Surname: %s\n",array[i].surname);
printf("Age: %u\n",array[i].age);
puts("");

}
}

40 / 57



Examples

Examples
Array of Structures — a Comment

The print_array() function prints the data from the array on the
screen. The array is passed to the function by the parameter. The
value of each field of each element is printed in a separate line. More-
over, after all data from a single element are printed on the screen the
cursor is moved one additional line lower to separate data of different
elements.

41 / 57



Examples

Examples
Array of Structures

int main(void)
{

fill_array(people_data, names, surnames);
print_array(people_data);
return 0;

}

42 / 57



Examples

Examples
Array of Structures — a Comment

In the main() function the fill_array() and print_array() functions
are invoked. All needed arguments are passed to them. Please notice,
that the people_array is passed by the array parameter. In the C
language, and in most of the other programming languages, the name
of the parameter may differ from the name of an argument. Only their
types should be compatible.

43 / 57



Examples

Examples
Structure and Union

The next example shows how to apply a union as a member (field) of
a structure. In other words the union is nested in the structure. Both
variables are used in a program that creates and displays information
about a computer game character.

44 / 57



Examples

Examples
Structure and Union

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

#define LENGTH 10

enum character_type {WARRIOR, SORCERER};

45 / 57



Examples

Examples
Structure and Union — a Comment

The code from previous slide contains preprocessor directives that in-
clude header files to the program, a definition of a constant that de-
scribes the number of elements of an array used for storing the name
of the game character and a definition of an enumerated type which de-
scribes the character type: a sorcerer or a warrior.

46 / 57



Examples

Example
Structure and Union

struct playable_character {
char name[LENGTH];
enum character_type type;
union {

float strength;
double magic_power;

} abilities;
};

47 / 57



Examples

Example
Structure and Union — a Comment

The previous slide contains a definition of a type of a structure for storing
information about the game character. The first field is an array in which
the name of the character will be stored. The second field is for storing
the type of the character. The third field is a union. If the character is
a warrior then the information about her/his strength will be stored in
the strength field. Otherwise, if she/he is a sorcerer the magic_power
field will store data about her/his magic power.

48 / 57



Examples

Example
Structure and Union

void generate_character(struct playable_character *character)
{

puts("Please name Your character:");
scanf("%9s",character->name);
srand(time(0));
if(rand()%2==WARRIOR) {

character->type = WARRIOR;
character->abilities.strength = rand()%1000+(float)rand()/(RAND_MAX+1.0);

} else {
character->type = SORCERER;
character->abilities.magic_power = 1000+rand()%RAND_MAX

+ (double)rand()/(RAND_MAX+1.0);
}

}

49 / 57



Examples

Examples
Structure and Union — a Comment

The generate_character() function fills the structure, that is passed
to it by a parameter, with data. First it asks a user to enter the name
of the character. The name is stored in the name field with the use of
the scanf() function. Please notice, that the field is an argument of the
aforementioned function. The arrow operator is used to access that field,
because the structure is passed by pointer. Number of characters read by
scanf() function from the keyboard is limited to 9, because of the num-
ber of characters the field can store. Next, the generate_character()
function initiates the PRNG and chooses the character’s type. If it is a
warrior then the function stores this information in the type field and
chooses a value for the strength field in the abilities union. Please
notice the way it references the union fields. The structure is passed by
a pointer, but the union is a regular variable that is a member of this
structure, so a regular dot is used for its fields. If the chosen character’s
type is a sorcerer, the function performs similar activities.

50 / 57



Examples

Examples
Structure and Union

void print_character(struct playable_character character)
{

printf("Name: %s\n",character.name);
if(character.type==WARRIOR) {

printf("Type: warrior\n");
printf("Strength: %f\n",character.abilities.strength);

} else {
printf("Type: sorcerer\n");
printf("Magic power: %f\n",

character.abilities.magic_power);
}

}

51 / 57



Examples

Examples
Structure and Union — a Comment

The print_character() function displays information about the game
character that are stored in the structure. This time the structure is
passed to the function by value, so its fields as well as the fields of the
union are referenced with the use of the dot. If the value of the type
field was displayed directly then the user would see on the screen 0 or
1 depending of the character’s type. To avoid this issue the value of
the field is used only to determine which message and which field of the
abilities union should be displayed on the screen.

52 / 57



Examples

Examples
Structure and Union

int main(void)
{

struct playable_character character;
generate_character(&character);
print_character(character);
return 0;

}

53 / 57



Examples

Examples
Structure and Union — a Comment

A structure of the name character is declared in the main() function
and filled with data by the generate_character() function. Next, its
content is displayed on the screen with the use of print_character()
function.

54 / 57



Examples

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, PhD
for helping me to complete the Polish version of this slides.

55 / 57



Examples

Questions

?

56 / 57



Examples

The End

Thank You for Your attention!

57 / 57


	Structures
	Unions
	Bit Fields
	Structures, Unions and Functions
	Examples

