
Fundamentals of Programming 1
Functions

Arkadiusz Chrobot

Department of Information Systems

November 22, 2024

1 / 61

Outline

1 Concepts of Procedural Programming

2 Functions

3 Local variables

4 Arguments

5 Recommendations

6 An Example

2 / 61

Concepts of Procedural Programming

Procedural Programming

One of the principles of the procedural programming paradigm is a sim-
plification of a program. The simplification is obtained by partitioning
the source code into small units, each with a unique name. Those units
are organized into a hierarchy, which means that a unit may use other
units provided they are defined or declared ahead. This allows program-
mers to apply the Cartesian analysis method known from mathematics
to programming problems. Such a problem can be solved by dividing it
into small subproblems that are easy to solve. The solution of the origi-
nal problem is achieved by combining solutions of all those subproblems.
The procedural programming paradigm also allows for using an abstrac-
tion.

3 / 61

Concepts of Procedural Programming

Abstraction
The abstraction in programming (and in other disciplines) is a process
of simplifying a problem by highlighting those parts of its definition that
are vital for its solution and hiding those which are not important. Maps
are an example of application of the abstraction:

(a) A satellite image (b) A map

Source: Google Maps

4 / 61

Functions

Functions

In the C language functions are an implementation of the concept of
subroutines. They allow the programmer to group and give a name to
the statements that together perform a specific task. Functions provide
a way for creating new statements, that are more suitable for solving a
given problem. Those statements are build on statements that already
exist in a programming language. In other words, functions make it
possible to use the abstraction. They also let programmers reuse the
code. Finally, a function may return a value, which makes it similar to
the mathematical concept of the same name.

5 / 61

Functions

Functions
Function Definition

The overall structure of a function definition is as follows:
returned_value_data_type function's_name(parameters_list)
{

…
}
The first line is called a prototype or a function’s header. It begins with
the declaration of the data type of the returned value, followed by a
function’s identifier (a name). After the name a list of parameters is
declared in the parentheses. The parameters are special variables that
allow the function to exchange data with other parts of the program.
The parameters list is followed by a block that is called a function’s body
or a text.

6 / 61

Functions

Functions
Returned Value

A function may return a value. For this purpose the return keyword has
to be used inside the function’s body. The keyword must be followed by
an expression whose value is returned. The expression may be optionally
enclosed in parentheses. It can be complex or very simple, like a single
variable, a constant or even a literal. The value of the expression has
to be compatible with the data type of the returned value, declared in
the function’s header. The return keyword is also an exit point for the
function.

7 / 61

Functions

Functions
Function’s Call

To perform its task, the function has to be called (invoked) from within
a definition of another function, like for example the main() function1.
The invocation of a function is made by placing its name followed by the
parentheses in the code. If the function doesn’t have any parameters
then the parentheses should be empty. Otherwise they ought to contain
arguments that are substituted for the parameters. There should be as
many arguments as parameters and the types of arguments should be
compatible with the types of corresponding parameters. After the func-
tion exits (finishes its job) the flow of control returns to the statement
that follows the function’s call in the source code. If the function returns
a value, then the value may be assigned to a variable of a compatible
type. Such a function may also be called inside an expression.

1Please notice, that I put the parentheses after the function’s name to distinguish
it in the text from the name of a variable or any other element of the code.

8 / 61

Functions

Functions
The void Keyword Usage

A function is an implementation of an algorithm. Some algorithms do
not require input data, so functions that implement them need neither
arguments nor parameters. To indicate that the function has no pa-
rameters, inside its definition, the void keyword can be used in the list
of parameters. Some programmers tend to leave the list’s parentheses
empty. This is not the same as using the void keyword. It means that
the function can take an unspecified number of arguments. The void
keyword may also be used to indicate, that the function does not re-
turn any value. In that case it should be applied as the return value
data type. The same keyword can be used to indicate that the program
should ignore the value returned by the function. To this end it is placed
in parentheses before a function call. It literally means that the type of
the value is cast to void. However, such a notation is rarely used. It is
sufficient to invoke the function without assigning its returned value to
any variable. This means that the program performs the function for its
side effects. 9 / 61

Functions

Functions
First Simple Example

#include<stdio.h>

int f1(void)
{

puts("I'm the f1() function and I return 5.");
return(5);

}

int variable_1, variable_2;

int main(void)
{

variable_1 = f1();
variable_2 = 5*f1();
(void) f1();
f1();
return 0;

} 10 / 61

Functions

Functions
Comment to the First Example

The f1() function in the program from the previous slide takes no ar-
guments but prints a message on the screen and returns 5. It is in-
voked 4 times in the program. The first time its value is assigned to the
variable_1. The second time it is invoked in an expression. The value
the function returns is multiplied by 5 and the result is assigned to the
variable_2. In the last two calls the value returned by the function
is ignored, but the message is displayed on the screen. Please notice,
that the name of the function is very simple. This is sufficient for the
example, but in more advanced program a descriptive name should be
given to the function. Such an identifier should contain at least one
verb, to indicate what the function does. Please also notice, that the
value placed after the return keyword could be in parentheses (the f1()
function) or not (the main() function).

11 / 61

Functions

Functions
Second Simple Example

#include<stdio.h>

int f1()
{

puts("I'm the f1() function and I return 5.");
return(5);

}

int variable_1, variable_2;

int main(void)
{

variable_1 = f1(1,2,3,4,5,6,7);
variable_2 = 5*f1(variable_1, variable_2);
return 0;

}

12 / 61

Functions

Functions
Comment to the Second Example

The example shows the difference between a definition of a function in
which the list of parameters is empty and the one in which the list of
parameters contains the void keyword. In the former case the list of
parameters is seemingly empty, but it is possible to pass to the function
any number of arguments, that will never be used. That can lead to
possible errors.

13 / 61

Functions

Functions
Third Simple Example

#include<stdio.h>

void f2(void)
{

puts("I'm f2() function and I return nothing.");
}

int a;

int main(void)
{

f2();
/*a = f2();*/ // This is not allowed.
return 0;

}

14 / 61

Functions

Functions
Comment to the Third Example

In the third example a function is defined that returns no value. It only
prints a message on the screen. Such a function cannot be used in an
expression. Its value cannot be assigned to a variable, because it simply
does not exist.

15 / 61

Functions

Functions
Forth Simple Example

#include<stdio.h>

void f3(void)
{

puts("I'm the f3() function.");
return;
puts("I return nothing and I won't print this message.");

}

int main(void)
{

f3();
return 0;

}

16 / 61

Functions

Functions
Comment to the Forth Example

Strange as it may seem, it is possible to use the return keyword in a
function that returns nothing. However, it must be immediately followed
by a semicolon. In this case the return keyword simply terminates the
function. Any statements that follow it won’t be performed.

17 / 61

Functions

Functions
A Declaration of a Function

A declaration of a function consists only of its header and a semicolon
that follows. A function declared in such a way has to be defined in
other part of the program, but the declaration allows the programmer
to use the function before it is defined. The declaration of a function has
many applications. One of them is reversing the hierarchy of definitions
of functions. That makes it possible to read them in the more natural
”top-bottom” way. Such an effect can be achieved by declaring first all
the necessary functions and then defining the main() function and the
earlier declared functions. The function declaration can be applied when
the programmer wants to use a function, but for some reason she/he
cannot declare it before using.

18 / 61

Functions

Functions
A Declaration of a Function — An Example

#include<stdio.h>

void f4(void); //A function's prototype.

int main(void)
{

f4();
return 0;

}

void f4(void)
{

puts("I'm the f4() function and I was defined after the main() function.");
}

19 / 61

Local variables

Local variables

Until now all variables that we used in programs have had a global
scope. The C programming language permits to declare variables inside
a function or even at the beginning of a block. Starting from the ISO
C99 standard, it lets the programmer to declare a variable just before
it should be used. It makes the program more legible. Applying in
the program local variables has many pros. Local variables allow for
better memory usage than the global ones. The former exist in memory
only when the function in which they are declared is performed. For that
reasons they are also known in the C language as the automatic variables.
Moreover, local variables are only visible in the block in which they are
declared, starting from the place of their declaration. They are invisible
outside the block, but the statements inside the block can access all
variables (and other elements of code) declared outside.

20 / 61

Local variables

Local variables
Variable Shadowing

Local variables can be given the same names as the global variables or
even other local variables declared in different blocks. When there are
many variables declared in the program which have the same name, in a
specific block under that name is available only the one with the nearest
declaration. The others are outside the scope of that block. This is called
a variable shadowing. That also applies to the names of all elements of
a program and in that case it is called a name masking. For example
a local constant of the same name as global variable is masking that
variable.

21 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

The allocation and deallocation of the memory for a local variable hap-
pens automatically and, like in the case of global variables, is transparent
to the programmer. The only thing she or he has to do is to declare such
a variable. However, the local variables exist only when the function in
which they are declared is executed. This is possible because the mem-
ory area of a program is divided into several parts. One of them (a code
segment) stores all the instructions that are to be executed during a
program run. The next one (a data segment) holds a place for all global
variables. Another one is a call stack segment. Whenever a function
is invoked, a stack frame also known as an activation record is created
on the call stack for this instance (invocation) of the function. In the
frame there is a place for local variables, parameters (which are a form
of local variables) and an address of return (the address of a statement
that should be performed after the function exits).

22 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

local variables

return address
parameters

Figure: Stack frame — a sketch

23 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

The call stack behaves according to the Last In First Out (lifo) rule.
When a function calls another function then a stack frame for the called
function is created on the top of the calling function’s activation record.
That frame is also destroyed before the calling function’s frame is re-
moved, what follows the order in which those functions complete. If the
calling function invokes another function then the area of the call stack
that was occupied by the stack frame of the previously called function
may be reused for the activation record of the newly called function. As
a consequence all local variables have an unspecified initial value and
they must be initialized by the programmer. If a variable is declared
inside a block that is a part of a function, the memory for that variable
is also allocated in the function’s stack frame.

24 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after program launch

25 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after invoking the f1()
function

25 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after invoking the
f2()function

25 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after the f2() has
completed

25 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after the f1() has
completed

25 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{
}

void f1(void)
{

f2();
}

int main(void)
{

f1();
return 0;

}

Stack frame for f2()

Stack frame for f1()

Stack frame for main()

The stack after the program ends

25 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

#include<stdio.h>

void f2(void)
{

int x = 1000000;
printf("x = %d\n", x);

}

void f1(void)
{

short int a;
short int b;
printf("a = %d\n", a);
printf("b = %d\n", b);

}
26 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

int main(void)
{

f2();
f1();
return 0;

}

27 / 61

Local variables

Local Variables
Memory Allocation And Deallocation For Local Variables

Frame for f2()
x

0xF4240

Frame for main()

(a) For The f2() Function

Frame for f1()
b

0xF
a

0x 4240

Frame for main()

(b) For The f1() Function

Figure: How The Frames Are Created on The Stack 28 / 61

Local variables

Local Variables
The static Keyword

Taking into the consideration the properties of local variables it is rec-
ommended to use them instead of the global variables whenever it is
feasible. The static keyword when applied to a local variable extends
its lifetime to the entire run-time of a program in which the variable is
declared. Moreover, that variable has an initial value of zero and is still
accessible only from within the function’s body. When one of the func-
tion’s instances modifies the value of the variable, then the subsequent
invocations will notice the modification. In other words, a local variable
declared with the static keyword has the characteristics of both the
local and the global variable.

29 / 61

Local variables

Local Variables
An Example

#include<stdio.h>

void count_instances(void)
{

static unsigned int sum;
sum+=1;
printf("The function was invoked %d times.\n",sum);
int i;
for(i=0; i<5; i++) {

int i = 1;
printf("This \"i\" variable isn't a loop counter: %d\n",i);

}
}

int main(void)
{

count_instances();
count_instances();
return 0;

}

30 / 61

Arguments

Direct Usage of Global Variables

Functions may directly reference global variables but it is not the best
practise. It has many disadvantages. Let’s try to answer the question:
what does the function invoked in the following code snippet do?

Invocation of add_numbers() Function
int sum = add_numbers();

Judging by its name, it adds some numbers. The type of the variable to
which is assigned the result of that function suggests that those numbers
are integers. However, we are unable to deduce how many those numbers
are, because they are stored in global variables. If we wanted to use
the function in another program we would have to copy not only the
definition of the function but also the declarations of global variables
used by the function. That’s only two of the disadvantages.

31 / 61

Arguments

Parameters

To avoid issues described in the previous slide the parameters may be
applied. A parameter is a special local variable that allows the function
to exchange data with the rest of the program. A function may have
more than one parameter. The parameters must have different names
than the local variables declared directly in the function’s body (outside
of other blocks in the body). Each parameter may have a unique type
or the types may repeat. In the location of code where the function is
invoked the parameters must be substituted by arguments of compatible
types. There should be as many arguments as parameters. There are
three ways of passing an argument by a parameter. Parameters make
functions more universal.

32 / 61

Arguments

Passing By Value

Parameters that pass arguments by value are declared similarly to regu-
lar variables, but in the parameters list of a function. Their declarations
are separated by commas. When more than one parameter of the same
type should be declared then the type of such a parameter must be re-
peated in each declaration. All the declarations can be placed in one line.
The arguments passed by such parameters can be literals, constants, lo-
cal and global variables and even expressions. Those parameters are
input parameters. If a variable is passed by such a parameter, then any
modification made to the value of the parameter inside a function body
does not affect the value of the variable. It is possible to use parameters
that pass arguments by value together with other kinds of parameters.

33 / 61

Arguments

Passing By Value
An Example

#include <stdio.h>

void f5(int x, int y)
{

puts("Inside the function:");
printf("The value of \"x\" parameter before a change: %d\n", x);
x+=1;
printf("The value of \"x\" parameter after the change: %d\n", x);
printf("The value of \"y\" parameter: %d\n",y);

}

int main(void)
{

int a=3;
printf("The value of \"a\" variable before passing to f5() function: %d\n",a);
f5(a,2*a);
printf("The value of \"a\" variable after f5() function finishes: %d\n",a);
return 0;

}

34 / 61

Arguments

Passing By Value
Comment to the Example

After running the program and reading all messages displayed on the
screen it can be noticed that modification of the x parameter had no
effect on the value of the a variable. Parameters and arguments that are
substituted by them may have the same names. Passing by value in the
example is equivalent to the following assignments:
int x = a;
int y = 2*a;

35 / 61

Arguments

Passing By Constant

If for some reason the value of the parameter should not be modified in
the function then passing by constant may be applied. The declaration
of such a parameter is prefixed with the const keyword. The same kinds
of arguments may be passed by such a parameter as in the case of passing
by value. Parameters passing by constant may be used together with
parameters passing by value.

36 / 61

Arguments

Passing By Constant
An Example

#include <stdio.h>

void f6(const int x)
{

printf("The value of \"x\" parameter: %d\n",x);
printf("The value of an expression with the \"x\" parameter: %d\n",x+1);
/* x+=1; */ // It is not allowed. It won't even compile.

}

int a = 3;

int main(void)
{

printf("The value of \"a\" variable before passing to the function: %d\n",a);
f6(a);
printf("The value of \"a\" variable after the function finishes: %d\n",a);
return 0;

}

37 / 61

Arguments

Passing By Constant
Comment to the Example

As it might be expected, the value of the parameter is not modified in
the example. Passing by constant is equivalent to the following assign-
ment:
const int x = a;

38 / 61

Arguments

Introduction to Pointers

Before a third way of passing argument by parameters will be introduced
we are going to learn about a new type of variable. Such a variable is
called a pointer. It is declared according to the following pattern:

type_of_variable *name_of_variable;
The * (a star or an asterisk) is the only thing that differentiates pointer
declaration from the declaration of a regular variable. If we used the
sizeof operator to measure the size of such a variable we would learn
that it is always 4 bytes for 32-bit computers and 8 bytes for 64-bit com-
puter. In other words, its size is independent of the data type used in its
declaration. This is because, the pointer does not store a value directly,
but it stores an address of a variable, called the pointed variable, that
stores the value. The data type in the pointer declaration determines
what type of variables can be pointed by the pointer.

39 / 61

Arguments

Introduction to Pointers

A neutral value of the pointer is defined by the null constant, however
newer editions of the C language standard allow programmers to use
0 in the place of this constant. To assign an address of a variable to
the pointer the address operator has to be applied. It is represented by
the & (an ampersand) symbol. To read a value of a variable pointed by
the pointer a dereference operator has to be applied. It is represented
by the * (a star or an asterisk) symbol. If the address stored in the
pointer should be displayed on the screen the "%p" conversion specifier
for the printf() function should be used. The address is displayed as
a hexadecimal number.

40 / 61

Arguments

Introduction to Pointers
An Example

#include <stdio.h>

int main(void)
{

int *pointer = NULL;
int variable = 3;
pointer = &variable;
printf("The value of the pointed variable: %d\n",*pointer);
printf("The address stored in the pointer: %p\n",pointer);
variable++;
printf("The value of the pointed variable: %d\n",*pointer);
*pointer+=1;
printf("The value of the pointed variable: %d\n",variable);
return 0;

}
41 / 61

Arguments

Introduction to Pointers
Comment to the Example

If we run and traced the program with the use of a debugger, we would
see that the value of the pointed variable can be both modified and read
with the use of the pointer. Please notice the difference between reading
the value of the pointer (the address that it stores) and the value of the
pointed variable.

42 / 61

Arguments

Introduction to Pointers

For better understanding of the pointers let’s take a look at the very
simplified model of the Random Access Memory (ram) in which every
variable has the size of a single memory cell. The variables from the
example program could be placed in such a memory as follows:
addresses

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006

cells

0
3
0
0

0x0001
0
0

pointer

variable

43 / 61

Arguments

Passing By Pointer

The pointers may be used as parameters of a function. Arguments for
such parameters may be only compatible pointers or addresses of com-
patible variables acquired with the use of the address operator. The
pointer parameter is both input and output parameter. The function
may pass by the parameter results to the rest of the program. It means
that the function may return more than one value with the use of such
parameters. It is possible to use passing by pointer parameters together
with passing by value and passing by constant parameters.

44 / 61

Arguments

Passing By Pointer
An Example

#include <stdio.h>

void f7(int *x)
{

puts("Inside the function:");
printf("The value of \"*x\" before a change: %d\n",*x);
*x+=1;
printf("The value of \"*x\" after the change: %d\n",*x);

}

int main(void)
{

int a = 3;
printf("The value of \"a\" variable before the f7() function call: %d\n",a);
f7(&a);
printf("The value of \"a\" variable after f7() function finishes: %d\n",a);
return 0;

}

45 / 61

Arguments

Passing By Pointer
Comment to the Example

Please observe how the f7() functions is invoked and how the dereference
operator * is used. In this example passing by pointer could be replaced
by passing by value and returning a result by the function. However,
such a replacement is not possible if a function returns more than one
value.

46 / 61

Arguments

Pure Functions

The concept of a pure function is one of the principles of functional
programming. A pure function is a function that does not have any
side effects and only returns a single value (a result). It means that the
function does not change directly or indirectly the value of any global
variable (the global state). Such functions are very useful in concurrent
programming, when threads are applied, because that functions do not
affect the state of threads others than those which invoked them and
thus are safe to use in such cases.

47 / 61

Arguments

Exit From a Function

A place in code where the function terminates is called an exit point.
The procedural paradigm requires that only one exit point exists in the
function. It means that the return keyword should be used only once in
the function body and in case of functions that do not return a value it
shouldn’t be used at all. However, it is common among C programmers
to disobey the rule, because using the return keyword multiple times
in function body makes it short, simpler, easier to understand and often
more efficient.

48 / 61

Recommendations

Recommendations

1 A function definition should be short and legible.
2 A function should have a descriptive name containing a verb.
3 A function should have at least one parameter. On the other hand

it shouldn’t have too many parameters.
4 A function should do only one task described by its name.
5 Functions without parameters should be used scarcely.
6 A function should never use global variables directly.

The Unix programmers follow a convention of creating functions, that
is often applied by other programmers. By the convention a function
returns as a value an integer that indicates the state of completing the
function’s task. If it is zero, then the task was completed successfully.
If it is negative it indicates failure and the absolute value of the integer
usually identifies the exception that caused the problem. The function
passes its results with the help of pointer parameters.

49 / 61

An Example

Quadratic Equation — a Version With Functions
A Function That Takes Equation’s Coefficients From The User

#include<stdio.h>
#include<math.h>

void get_abc_coefficients(float *a, float *b, float *c)
{

puts("Please enter the coefficients of the quadratic equation:");
do {

printf("a= ");
scanf("%f",a);
if(*a==0.0)

puts("The vale of \"a\" coefficient mustn't be zero!");
} while(*a==0.0);
printf("b= ");
scanf("%f",b);
printf("c= ");
scanf("%f",c);

}

50 / 61

An Example

Quadratic Equation — a Version With Functions
Comment to the Function

The function is responsible for assigning to its parameters the values of
coefficients entered by the user. It does only this task. Please notice,
that inside the function the second argument passed to the scanf()
invocation is not prefixed with an ampersand. This is because, the
scanf() function takes as the second argument an address of a variable
and the parameters a, b and c are pointers that store such addresses.
Using the address operator in their cases would be an error, because the
operator would return addresses of the pointers instead of addresses of
variables pointed by them.
The included header files are not a part of the function, but their pres-
ence is required to compile the whole program successfully.

51 / 61

An Example

Quadratic Equation — a Version With Functions
A Discriminant Calculating Function

float calculate_delta(float a, float b, float c)
{

return b*b-4*a*c;
}

52 / 61

An Example

Quadratic Equation — a Version With Functions
A Function Implementing the signum Operation

int signum(float number)
{

return (number<0) ? -1 : 1;
}

53 / 61

An Example

Quadratic Equation — a Version With Functions
A Function Calculating the q Coefficient

float calculate_q(float b, float delta)
{

return -0.5*(b+signum(b)*sqrt(delta));
}

54 / 61

An Example

Quadratic Equation — a Version With Functions
A Function Calculating a Single Root of the Quadratic Equation

float calculate_root(float a, float q)
{

return q/a;
}

55 / 61

An Example

Quadratic Equation — a Version With Functions
A Function Calculating Two Roots of the Quadratic Equation

void calculate_roots(float a, float c, float q, float *x1, float *x2)
{

*x1=q/a;
*x2=c/q;

}

56 / 61

An Example

Quadratic Equation — a Version With Functions
The main() function

int main(void)
{

float a=0.0,b=0.0,c=0.0;
get_abc_coefficients(&a,&b,&c);
float delta = calculate_delta(a,b,c);
if(delta==0.0) {

float q = calculate_q(b,delta);
printf("The equation has a single root %.10f\n",

calculate_root(a,q));
}
if(delta>0.0) {

float q = calculate_q(b,delta);
float x1=0.0, x2=0.0;
calculate_roots(a,c,q,&x1,&x2);
printf("The functions has two roots - x1:\
%.10f, x2: %.10f\n",x1,x2);

}
if(delta<0.0)

puts("The equation doesn't have real roots.");

return 0;
} 57 / 61

An Example

Quadratic Equation — a Version With Functions
Comment to the Example

Please notice, that one of the strings in the main() function is divided
into two with the use of the backslash (\) character. It’s a special char-
acter that informs the compiler that those two strings are in reality
one. The program with the functions is longer than the original pro-
gram demonstrated in the previous lecture. However, it is easier to
understand. It is also easier to distinguish between the cases when the
quadratic equation has one root or two roots if the program is parti-
tioned into functions.

58 / 61

An Example

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc for
helping me to complete the Polish version of these slides.

59 / 61

An Example

Questions

?

60 / 61

An Example

The End

Thank You for Your attention!

61 / 61

	Concepts of Procedural Programming
	Functions
	Local variables
	Arguments
	Recommendations
	An Example

