
Fundamentals of Programming 1
Flow of Control

Arkadiusz Chrobot

Department of Information Systems

November 7, 2024

1 / 55

Outline

Control Statements

Block of Statements

Conditional Statement

Switch Statement

Iteration Statements
The for Loop
The while loop
The do…while loop

The break and continue Keywords

Examples

2 / 55

Control Statements

A statement is a high-level programming language instruction. Control
statements or control flow statements are statements that change the
flow of control in a program, and a crucial part of every programming
language. They make it possible to change the order in which other
statements are performed. Particularly, they decide, basing on the
value of some condition (expression), whether to execute or repeat the
execution of other statements. Control statements allow programmers
to implement complex algorithms.

3 / 55

Block of Statements

A block of statements (or simply a block) in the C language is a group
of statements inside a pair of curly brackets. The group can consist of
several statements or just one statement or even it can be empty. The
block is interpreted by the program as a single statement. Blocks can
be nested i.e. a block can be inserted into another block. We already
saw the usage of a block in the definition of the main() function, but it
can be applied in other parts of source code, particularly in the control
statements.

4 / 55

Notes

Notes

Notes

Notes

Conditional Statement
Description

The conditional statement (or simply the conditional) is a statement
that performs an action depending on a some condition that is a part
of it. The overall structure of such a statement is as follows:
if(condition)

statement;
else

alternative_statement;
If the condition is satisfied, than the statement is executed, other-
wise the alternative_statement is carried out. When not needed the
whole else branch can be omitted. In the C language any expression
can be used as the condition.

5 / 55

Conditional statement
Remarks

The C language is very flexible in the terms of the structure of state-
ments. For example in the if statement a programmer may not only
skip the else branch but even the statement. This can be achieved by
putting a semicolon right behind the closing parenthesis. Such a con-
struction of the conditional, although correct, has no practical mean-
ing. Using an assignment instruction (=) in the condition, instead of
the equality operator (==) is a common mistake1. However, experi-
enced programmers can use such a condition correctly for simplifying
the program.

1The compiler will only warn the programmer that the condition should be
inserted into another pair of parentheses.

6 / 55

Conditional Statements
An Example

if(a==b)
a=5;

else
b=5;

Some programmers recommend to use blocks even if only a single state-
ment is used after the condition and/or the else keyword.
if(a==b) {

a=5;
} else {

b=5;
}

7 / 55

Conditional Statements
Nested Conditionals

It is possible to place a conditional inside another conditional. Such a
statement is called a nested conditional:
if(a==3) {

if(b==4)
c=5;

}
However, such a construction can make the code illegible, so it is better
to use a complex condition instead:
if(a==3 && b==4)

c=5;
Beware, that converting the nested conditional to a simpler form is not
always as obvious as in the example, due to the short-circuit evaluation
of the expression in the condition.

8 / 55

Notes

Notes

Notes

Notes

Switch Statement

The switch statement is a kind of multiple choice statement that changes
the flow of control. It performs other statements depending on the value
of a variable which is called a selector. The variable can be of int, char
or other integer type. The overall structure of switch statement is as
follows:
switch(selector) {

case value_1: statement_1;
break;

…
case value_nth: statement_nth;

break;
default: statement;

}
The number of cases (case) is limited only by the range of selector’s
data type.

9 / 55

Switch Statement
Remarks

More than one statement can be placed in a single case in the switch
statement. It is only required that they should be followed by the
break keyword. Using a block is not required. The break keyword,
when reached by the program, finishes the execution of the switch state-
ment. If the case is not terminated by the break then the program
unconditionally carries out the next case. Sometimes this feature of
switch statement is deliberately used by programmers, but often it is a
mistake. If the value of the selector doesn’t match any of the values in
the cases then the statements in the default case are performed. The
programmer may decide to not to use the default case at all.

10 / 55

Switch Statement
An Example

switch(a) {
case 1: puts("One");

break;
case 2: puts("Two");

break;
case 3: puts("Three");

break;
default: puts("A different number.");

}
If the value of the a variable is 1 then the program will print the word
One on the screen. If it is 2 then the word Two will be printed. Similarly
the word Three will appear on the screen if the value of a is 3. In case
of any other value the sentence A different number. will be shown
on the screen.

11 / 55

Iteration Statements

Iteration statements or simply loops repeat the execution of a state-
ment or a block for a finite (sometimes infinite) number of times. The
statement or the block is called a body of the loop. A single repetition
of the body is called an iteration, hence the other name of the loops.
Usually, the outcome of a single iteration is different from the outcomes
of the other iterations, but sometimes is the same.

12 / 55

Notes

Notes

Notes

Notes

The for Loop

The for statement is a count-controlled loop which means that it re-
peats its body for a given number of times. It needs at least one variable
that is known as a loop counter or a control variable. The overall struc-
ture of the for statement is as follows:
for(counter(s) initialization;condition;afterthought)

body
The upper part of the for statement is called a header. In the counter(s)
initialization part a loop counter or counters are given an initial
value. If the condition is true, the body is repeated otherwise the
loop terminates. The afterthought part describes what happens with
the loop counter(s) after a single iteration. Usually the counters have
identifiers that consist of a single letter. The loop counter can be a
variable of any primary data type in the C language. The for loops
can be nested.

13 / 55

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=0;a<5;a++)
printf("%d\n",a);

return 0;
}

14 / 55

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=0;a<5;a++) {
printf("%d\n",a);

}
return 0;

}

15 / 55

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=1;a<=5;a++)
printf("%d\n",a);

return 0;
}

16 / 55

Notes

Notes

Notes

Notes

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=0;a<7;a+=2)
printf("%d\n",a);

return 0;
}

17 / 55

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

a=1;
for(;a<=5;) {

printf("%d\n",a);
a++;

}
return 0;

}

18 / 55

The for Loop
Examples

#include<stdio.h>

int a;

int main(void)
{

for(a=7;a>0;a--)
printf("%d\n",a);

return 0;
}

19 / 55

The for Loop
Examples

#include<stdio.h>

int i,j;

int main(void)
{

for(i=7,j=0;i>j;j++,i--)
printf("%d %d\n",i,j);

return 0;
}

20 / 55

Notes

Notes

Notes

Notes

The for Loop
Examples

#include<stdio.h>

double x;

int main(void)
{

for(x=0.0;x<0.5;x+=0.01)
printf("%.10f\n",x);

return 0;
}

21 / 55

The for Loop
Examples

#include<stdio.h>

int a,i;

int main(void)
{

for(i=0;i<5;i++) {
a+=i;
printf("%d\n",a);

}
return 0;

}

22 / 55

The for Loop
Examples

int a;
int main(void)
{

for(a=0;a<5;a++)
;

return 0;
}

23 / 55

The while loop

The while statement is a condition-controlled loop. It repeats the
execution of its body as long as the condition that is a part of the loop
is satisfied. The overall structure of such a loop is as follows:
while(condition)

body;
The number of iterations of the while loop is not known in advance,
therefore its body has to contain at least one expression that will even-
tually make the condition false and the loop will terminate. Otherwise
the loop will continue to perform the body infinitely. The while loop
can be nested or used inside the for loop. It is also possible to use the
for loop inside the while.

24 / 55

Notes

Notes

Notes

Notes

The while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

while(a!='q')
scanf(" %c",&a);

return 0;
}

25 / 55

The while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

while(a!='q') {
scanf(" %c",&a);

}
return 0;

}

26 / 55

The while Loop
Examples

#include<stdio.h>

int x,y;

int main(void)
{

while(y>=0) {
scanf("%d",&y);
x+=y;

}
return 0;

}

27 / 55

The do…while loop

The do…while statement is similar to the while loop. However, due
to its construction the body is always executed at least once. The
condition is checked after execution of the body. The overall structure
of the loop is as follows:
do

body
while(condition);

28 / 55

Notes

Notes

Notes

Notes

The do…while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

do
scanf(" %c",&a);

while(a!='q');
return 0;

}

29 / 55

The do…while Loop
Examples

#include<stdio.h>

char a;

int main(void)
{

do {
scanf(" %c",&a);

} while(a!='q');
return 0;

}

30 / 55

The do…while Loop
Examples

#include<stdio.h>

int x,y=1;

int main(void)
{

do {
x+=1;
y*=x;

} while(x!=10);
return 0;

}

31 / 55

The break Keyword

The break keyword may be applied not only in the switch statement
but also inside a loop’s body. In that case it is used with a conditional
statement or a ternary operator. If the condition is met, than the break
keyword terminates the loop. In other words it creates an additional
exit point in the loop.

32 / 55

Notes

Notes

Notes

Notes

The continue keyword

The continue keyword can only be applied inside a loop body and is
accompanied by a conditional or a ternary operator. If executed the
continue keyword terminates the current iteration of the loop and stars
the next one. Execution of all statements placed behind the keyword
in the loop’s body is in that case skipped.

33 / 55

The continue keyword
An Example

#include <stdio.h>

int i;

int main(void)
{

for(i=-5;i<=5;i++) {
if(i==0)

continue;
printf("5 by %d is %f\n",i,5.0/i);

}

return 0;
}

34 / 55

The goto keyword

The goto keyword (statement) redirects control to any arbitrary place
in the source code marked by a label. The label may be located above
the spot in code where the goto is used or below or even in the same
place. Although the goto keyword can be helpful its usage should be
avoided. In the beginning of computer science it was overused by the
programmers. That resulted in a messy, unreadable, unmaintainable
and often incorrect code. The situation was so serious that Edsger
Dijkstra, one of the pioneers of computer science has forbidden to use
the goto statement at all. In the C language the goto keyword is
usually applied by experienced programmers for exceptions handling
and optimizing the performance of a program. Other usages of that
statement should be avoided at any cost.

35 / 55

The goto keyword
An Example

#include <stdio.h>

int i;

int main(void)
{

label_1: i++;
printf("%d\n",i);
if(i==15)

goto label_2;
goto label_1;

label_2:
return 0;

}

36 / 55

Notes

Notes

Notes

Notes

Factorial
Description

In mathematics the factorial operation is defined for natural numbers
as follows:
0! = 1
1! = 1
n! = 1 · 2 · 3 · 4 · . . . · (n − 1) · n
The program in the next slide calculates the factorial using a single for
loop. The loop counter (the i variable) also serves for storing succes-
sive natural numbers that are multiplied. The final result is stored in
the factorial variable, but the same variable is also used for storing
the partial products. The argument of the factorial is entered by the
user. However, the do…while loop limits user’s choices to the natural
numbers smaller that 21. The reason for that is the type of factorial
variable. It simply cannot store factorials of greater numbers. Please
observe, that the program correctly computes the 0!. In that case the
for loop body is not executed. Not even once.

37 / 55

Factorial
The Code

#include <stdio.h>

unsigned long long int factorial = 1;
unsigned char i,number;

int main(void)
{

do {
printf("Please enter a natural number that is less than 21, ");
printf("for which You wish to calculate the factorial:\n");
scanf("%hhu",&number);

} while(number>20);

for(i=1;i<=number;i++)
factorial*=i;

printf("Factorial of %hhu is %llu\n",number,factorial);

return 0;
}

38 / 55

Factorial
The Code — a slightly different approach

#include <stdio.h>

unsigned long long int factorial = 1;
unsigned char i,number;

int main(void)
{

do {
printf("Please enter a natural number that is less than 21, ");
printf("for which You wish to calculate the factorial:\n");
scanf("%hhu",&number);

} while(number>20);

for(i=1;i<=number;factorial*=i,i++)
;

printf("Factorial of %hhu is %llu\n",number,factorial);

return 0;
}

39 / 55

Greatest Common Divisor
Description

The next example is a program that calculates the Greatest Common
Divisor. It uses a modified Euclid’s Algorithm that was introduced in
the first lecture. The names of the variables are preserved, but the
program repeats the m = n and n = r statements just after the r
becomes zero. It simplifies the code, but the result is stored in m
instead of n. Furthermore, the GCD is calculated only for natural
numbers. There is also introduced a while loop that prohibits the user
from entering zero as the value of both m and n.

40 / 55

Notes

Notes

Notes

Notes

Greatest Common Divisor
The Code

#include <stdio.h>

unsigned int r, n, m;

int main(void)
{

puts("Please enter two natural numbers.");

scanf("%u",&m);
scanf("%u",&n);

while(n==0 && m==0) {
puts("The values cannot simultaneously be zero!");
scanf("%u",&m);
scanf("%u",&n);

}
if(n!=0) {

do {
r=m%n;
m=n;
n=r;

} while(r!=0);
}
printf("The GCD for those numbers is: %u\n",m);
return 0;

}

41 / 55

Quadratic equation
Description

Another example is a program that calculates the roots of a quadratic
equation. It uses formulas that are immune to the accumulation of
rounding errors, which is one of the issues of the floating-point arith-
metics. For the ”regular” formulas used for solving the quadratic equa-
tions those errors appear when a · c ≪ b and the float data type is
used. The ”safe” formulas are as follows: q ≡ − 1

2 · [b + sgn(b) ·
√
∆],

x1 = q
a and x2 = c

q , where sgn is a signum function, that yields 1 if
b ≥ 0 or −1 if b < 0. The signum function is implemented with the use
of the ternary operator. The program is protected, so the user cannot
enter zero as a value of the a coefficient. The sqrt() function is a
part of math library of the C language. It calculates the square root
of a number. To use the function it is necessary to include the math.h
header file to the program.

42 / 55

Quadratic equation
The Code

#include<stdio.h>
#include<math.h>

float a,b,c,delta,q;

int main(void)
{

puts("Please enter the quadratic equation coefficients:");
do {

printf("a= ");
scanf("%f",&a);
if(a==0.0)

puts("The value of the 'a' coefficient cannot be 0! Please, enter it correctly:");
} while(a==0.0);
printf("b= ");
scanf("%f",&b);
printf("c= ");
scanf("%f",&c);
delta = b*b-4*a*c;
if(delta>=0) {

q = (b<0) ? -0.5*(b-sqrt(delta)) : -0.5*(b+sqrt(delta));
if(delta!=0.0)

printf("x1=%f x2=%f\n",q/a,c/q);
else

printf("x=%f\n",q/a);
} else

puts("This equation has no roots in the real number domain.");

return 0;
}

43 / 55

Binary Numbers
Description

Sometimes it is necessary to display a decimal number in binary. Unfor-
tunately, the C99 standard doesn’t define a special formatting string
for the printf() function to do that in a simple way. However, we
should remember that any information in computer memory, including
numbers, is represented in binary. The only issue is how to ”take it” to
the screen. That is what the next program does. It displays in binary
an eight-bit number stored in a char variable using a single for loop.
Inside the body of the loop each bit of the number, starting from the
most significant one, is tested with the use of the masking operation.
The second argument of this operation is an expression that shifts right
the value of mask constant (eight bits, the most significant one is set)
by as many positions as it is indicated by the value of the loop counter.

44 / 55

Notes

Notes

Notes

Notes

Binary Numbers
The Code

#include <stdio.h>

#define MASK 128 // 10000000

int i;
char number;

int main(void)
{

puts("Please enter the number to be displayed in binary:");
scanf("%hhi",&number);
for(i=0;i<8*sizeof(number);i++)

printf("%d",number&(MASK>>i)?1:0);
return 0;

}

45 / 55

Prime Numbers
Description

A prime number is any natural number greater then one, that is divisi-
ble only by one and itself. Finding prime numbers is so time-consuming,
that those numbers are applied in cryptography to construct ciphers.
The next program displays all such numbers form 3 to almost the up-
per limit of the unsigned long long int type. The basic algorithm
for finding a prime number is as follows: Take a natural number and
check if it is a prime by dividing it by all natural numbers grater than
1 and less than the number. If all reminders after those divisions are
not zeros, the number is a prime, otherwise it is not. Unfortunately,
this algorithm is very inefficient. It is possible to slightly improve it,
by making two modifications. In the program the numbers that should
be checked are generated by an external for loop and all of them are
odd. The internal for loop checks if a particular number is a prime by
applying the above algorithm, but it stops checking when the divisor
is greater then the square root of the tested number or when the re-
minder is equal zero. Please note the useage of the prime variable and
the break keyword.

46 / 55

Prime Numbers
The Code

#include <stdio.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>

unsigned long long int candidate, divisor;
bool prime;

int main(void)
{

puts("Prime numbers greater than 2:");
for(candidate=3;candidate<ULLONG_MAX;candidate+=2) {

prime=true;
for(divisor=2;divisor<=sqrt(candidate);divisor++)

if(candidate%divisor==0) {
prime = false;
break;

}
if(prime)

printf("%llu ",candidate);
}

return 0;
}

47 / 55

Cosine
Description

In the math library of the C language there is the cos() function that
calculates the value of cosine for a given angle measured in radians.
However, it is worth to know how to calculate such a value without
the help of the cos() function. One of the possibilities is to apply the
MacLaurian series. For the cosine it takes the following form:
cos(x) = 1 − x2

2! +
x4

4! − x6

6! + . . . + (−1)k · x2k

(2k)! + . . .
If we divide some of the series terms by their left neighbours, we will
come to the conclusion that they differ by a factor of − x2

(2i)(2i−1) , where
i indicates the position of the term in series. We assume that for the
− x2

2! term the value of i is 1.

48 / 55

Notes

Notes

Notes

Notes

Cosine
Description — follow-up

The program in the next slide computes the cosine for an angle of
π/3 radians. In the body of the while loop all the necessary terms of
MacLaurian series are calculated and stored in the term variable. The
cosinus variable stores the sum of all calculated terms. The i variable
stores the position of the current term. The loop should terminate when
the value of cosinus is the same as of cos() function. However, we
cannot compare them directly, because of the floating-point arithmetics
properties. Those two numbers could always differ by a very small value
and the loop would never stop. Instead, the program measures if the
absolute error of those two numbers is less or equal to the epsilon
constant, which means that those values are the same with the respect
to eleven digits after the decimal point. The absolute error is calculated
by subtracting the already mentioned numbers and taking the absolute
value of the result. The absolute value is calculated with the use of
fabs() function from the math library of the C language.

49 / 55

Cosine
The Code

#include<stdio.h>
#include<math.h>

#define EPSILON 1e-11

double cosinus = 1, term = 1, i = 1;
const double x = M_PI/3;

int main(void)
{

while(fabs(cos(x)-cosinus)>EPSILON) {
term *= -1.0*x*x/((2*i-1)*(2*i));
cosinus += term;
i++;

}

printf("The value of the cosine for the %f radians angle is %f\n",x,cosinus);

return 0;
}

50 / 55

Natural Exponential Function
Description

The value of the natural exponential function, for a given exponent,
can be calculated similarly to the cosine. The MacLaurian series for
such a function takes the following form:
ex = 1 + x

1! +
x2

2! +
x3

3! + . . . + xk

k! + . . .
Using the same method as previously we can find out that the terms
differ by a factor of x

i , where i > 0 is the position of a given term
in the series. The program in the next slide calculates the value of
the exponential function for an exponent entered by the user. It uses
a similar algorithm as the program that calculates the cosine. The
main difference between them is that the program for the exponential
function uses the relative error to compare the value calculated with
the use of the MacLaurian series and the value of the exp() function
(also from the math library). The latter also calculates the value of
the natural exponential function. The relative error can be applied in
this program, instead of the absolute error, because the value of the
exponential function is never zero.

51 / 55

Natural Exponential Function
The Code

#include<stdio.h>
#include<math.h>

#define EPSILON 1e-11

double exponential = 1.0, x, i=1, term = 1;

int main(void)
{

puts("Please enter the exponent:");
scanf("%lf",&x);
while(fabs((exp(x)-exponential)/exponential)>EPSILON) {

term *= (x/i);
exponential += term;
i++;

}

printf("The value of e^x is: %f\n",exponential);

return 0;
}

52 / 55

Notes

Notes

Notes

Notes

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, MSc
for helping me to complete the Polish version of this slides.

53 / 55

Questions

?

54 / 55

The End

Thank You for Your attention!

55 / 55

Notes

Notes

Notes

Notes

	Control Statements
	Block of Statements
	Conditional Statement
	Switch Statement
	Iteration Statements
	The for Loop
	The while loop
	The do…while loop

	The break and continue Keywords
	Examples

