
Fundamentals of Programming 1
Basics of the C Language

Arkadiusz Chrobot

Department of Information Systems

October 25, 2024

1 / 46

Outline

Initialization of a Variable

Constants (Once Again)

Operators
Relational Operators
Arithmetic Operators
Boolean Operators
Bitwise Operators
The Ternary Operator
Type Casting
Other Operators
Operators Precedence

Basic Input/Output

2 / 46

Initialization of a Variable

Before a variable can be used (more precisely, it can be read) it has to be
initialized. That means it must be assigned an initial value. Many program
errors have their roots in lack of the initialization. Fortunately variables
of the global scope have a default value of zero. However, such an initial
value is not always suitable for the program.
In this lecture most of the names of variables will be a single lowercase
letter.

3 / 46

Assignment Instruction

Using an assignment instruction is probably the easiest way of initializing
a variable. In the C language this instruction has a = symbol. Generally,
the assignment instruction is used for changing a value of the variable, not
only initializing it. Formally, such an instruction evaluates an expression
standing on its right side and converts the type of the result to the type
of the variable placed on its left side. As a side-effect of such a conversion
the variable gets the value of the expression. The programmers are more
interested in the side-effect than in the conversion. In the C language the
assignment instruction is also an operator, which means it returns a value.

4 / 46

Notes

Notes

Notes

Notes

Initialization Methods
Initialization of Integer Variables

A variable can be assigned an initial value in the place where it is declared.
The listing below shows how it can be done for integer variables.
int a = 3, b = 075, c = 0xab, d = 1u;

int main(void)
{

return 0;
}
If the number is prefixed by zero, then it is an octal number. If the prefix is
0x, then it is a hexadecimal number. The integer numbers can also have a
suffix, like u or U, which means the numbers are unsigned or l or L, which
means they are of the long type. Both of the suffixes can be combined
into lu or LU.

5 / 46

Initialization Methods
Initialization of Integer Variables

Because in the C language the assignment instruction is also an operator,
it is possible to assign a single value to many variables, just like that:
int a, b, c;

int main(void)
{

a=b=c=3;
return 0;

}

6 / 46

Initialization Methods
Character Variables Initialization

A character variable (of the char type) may be assigned a number that
can mean an ascii code or be assigned a character in apostrophes.
char a = 65, b = 'a';

int main(void)
{

return 0;
}
Please remember that the variables of such a type may store both charac-
ters and numbers.

7 / 46

Initialization Methods
Floating-Point Variables Initialization

The floating-point variables (of the float, double and long double
types) can be initialized with the use of a regular decimal number with
fraction part or by a number expressed in the scientific notation. For
example the 0.01 number may be expressed as 1e-2 which means 1·10−2.
If the decimal number should be of the float type, then it ought to be
ended with an f suffix.
double a = 0.001f, b = 0.02, c = 1e-2;

int main(void)
{

return 0;
}

8 / 46

Notes

Notes

Notes

Notes

Constants and the const Keyword

The const keyword can be used, instead of the preprocessor #define
directive, to define a constant, like this:
const int SEVEN = 7;

int main(void)
{

return 0;
}
The const keyword means that the value of seven will not change during
the program run1. Please note, that the identifier of the constant is,
according to the convention, written in uppercases.

1There are ways to change the value of such an constant, but they won’t be
discussed here.

9 / 46

Operators

Operators are for building expressions. The value of an expression may be
assigned to a variable with the help on the assignment instruction which
is also an operator. There are several categories of operators in the C
language, but only a few of them will be discussed during this lecture.
Similarly as in mathematics operators are evaluated in the expressions in
a specific order. In other words there is defined a precedence order for the
operators. Other attribute of the operators is associativity, which can be
right-to-left or left-to-right.

10 / 46

Relational Operators

Relational operators are binary operators. In this context it means that they
require two arguments. The operators test the relation between values of
those arguments and return 1 if it is true or 0 otherwise.

Operators Description
==, != Equality and inequality operators. The first one returns one

if its arguments are equal, the second one does the same if
they are not equal.

<, >, <=, >= “less than”, “greater than”, “less than or equal“, ”greater
than or equal“

11 / 46

Arithmetic Operators

Operators Description
++, -- Unary increment and decrement operators. They may be

left-to-right associative or right-to-left associative, for ex-
ample ++a; (pre-increment), a++; (post-increment), --a;
(pre-decrement), a--; (post-decrement). They increment
or decrement the value of variable by one and return the re-
sult of this operation.

+, - Those operators may be binary or unary. In the former case
they simply mean addition and subtraction. In the later case
the - operator changes the sign of a number and the + does
nothing.

*, / Multiplication and division operators. Warning: If the argu-
ments of the division operator are integers, then the result is
also an integer, irrespectively of the type of the variable in
which it is stored.

% The modulus operator returns the remainder after division
of two integer numbers.

12 / 46

Notes

Notes

Notes

Notes

Arithmetic Operators
Integer Overflow

The integer overflow happens when the result of an arithmetic operation
(i.e. an operation that involves arithmetic operators) is outside of the
range of the variable where it is stored. The final value of the result is thus
incorrect.
unsigned char a = 255;
char b = -128;

int main(void)
{

a = a + 1; //The value of "a" is 0;
b = b - 1; //The value of "b" is 127.

return 0;
}

13 / 46

Arithmetic Operators
Integer Overflow — Explanation

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1+
0 0 0 0 0 0 0 01

+1+1+1+1+1+1+1+1

The integer overflow in a variable of the unsigned char type.

14 / 46

Arithmetic Operators
Integer Overflow — Explanation

1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1+
0 1 1 1 1 1 1 11

+1

The integer overflow in a variable of the char type.

15 / 46

Arithmetic Operators
Modulus Operator – Description

The modulus operator in the C language is applied only to integers. Its
result always fulfills the following equation: (x/y)*y+(x%y)==x. The
examples show the result of the modulus operation when at least one of
its arguments is negative.
5%-2 // The value of the expression is 1.
-5%2 // The value of the expression is -1.
-5%-2 // The value of the expression is -1.

Like in the case of a regular division operation, the divisor must not be
zero.

16 / 46

Notes

Notes

Notes

Notes

Arithmetic Operators
Division Operator – Description

The expressions in the example yield a different results, although they look
very similar. In the first expression both arguments are integers. In the
second one, the first argument is a floating-point number. The C language
compilers recognize all numbers without the decimal point as an integer
number.
double a;

int main(void)
{

a = 4/5; // The result is 0.
a = 4.0/5; // The result is 0.8.

return 0;
}

17 / 46

Arithmetic Operators
Shorthands

In some cases, when the value of an expression is assigned to a variable
which itself is used in the expression it is possible to use a shorthand form
of the assignment.
int a=2, b=2;
int main(void)
{

b+=a; // Instead of b=b+a;
b-=a; // Instead of b=b-a;
b*=a; // Instead of b=b*a;
b/=a; // Instead of b=b/a;
b%=a; // Instead of b=b%a;

return 0;
}

18 / 46

Arithmetic Operators
Description of the Increment and Decrement Operators

int a = 4, b;
int main(void)
{

b=++a; //After: "b" is 5, "a" is 5.
a=4;
b=a++; //After: "b" is 4, "a" is 5.
a=4;
b=--a; //After: "b" is 3, "a" is 3.
a=4;
b=a--; //After: "b" is 4, "a" is 3.
a=4;
a++; //After: "a" is 5.
a=4;
++a; //After: "a" is 5.
a=4;
a--; //After: "a" is 3.
a=4;
--a; //After: "a" is 3.

return 0;
}

19 / 46

Boolean Operators

Boolean (logical) operators are used in expressions which evaluate to true
or false. In the C language the following boolean operators are available:

Operator Description
||, && Binary operators of logical sum (or) and logical product

(and).
! The unary logical negation operator.

Although the operators yield 1 (true) and 0 (false), it is worth to remem-
ber, that in the C language every expression that evaluates to value
different than zero is simultaneously true and every expression that
evaluates to zero is simultaneously false. The && operator returns true
(1) if both of its argument are true and false (0) otherwise. The || oper-
ator yields false (0) if both its arguments are false and true otherwise.

20 / 46

Notes

Notes

Notes

Notes

Boolean Operators
Short-Circuit Evaluation

If the first argument of the && operator is false than the second one is
not evaluated – there is no need to do so, the whole expression is false.
Similarly, if the first argument of the || operator is true, then the second
one is ignored – the whole expression is true. This is called a short-circuit
evaluation and in some cases can have a side-effect.
int a,b;
int main(void)
{

(a=0)&&(b=4); //Both variables will be zero.
(a=4)&&(b=3); //The "a" variable will be 4 and "b" will be 3.
(a=0)||(b=0); //Both variables will be zero.
(a=3)||(b=4); //The "a" variable will be 3 and "b" will be 0.

return 0;
}

21 / 46

Bitwise Operators

The bitwise operators are similar to boolean operators but operate on pairs
of corresponding bits of their arguments instead of the whole values. The
arguments have to be integers. The bitwise operators may be used in
shorthand assignments like the arithmetic operators.

Operator Description
|, &, ^ The bitwise or, bitwise and, and bitwise exclusive or

(xor) operators.
~ Unary bitwise complement operator.

>>, << The bitwise left and right shift operators. Warning: In
C language both of those operators may be applied to
negative numbers. Particularly, shifting right a negative
number results in negative number – the sign bit (Most
Significant Bit in two’s compliment) is copied on the
left.

22 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 =
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 0
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

Notes

Notes

Notes

Notes

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 00
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 000
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 0000
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 00000
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

Notes

Notes

Notes

Notes

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 000000
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 0000000
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 00000001
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

The & Operator
Animation

The Bitwise & Operator – an Example
5 & 3 = 00000101 & 00000011 = 00000001 = 1
The bitwise & operator evaluates pairs of bits in its arguments. If both
bits in a specific pair are set (equal one), then a bit on the same position
in the result will be also set. Otherwise the bit will be cleared (its value
will be zero). This operator is often used to test the value of a specific bit
or group of bits in the first argument. The second argument in that case
is of a known value and is called a mask. The whole operation is called
masking.

23 / 46

Notes

Notes

Notes

Notes

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 =
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 0
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 00
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 000
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

Notes

Notes

Notes

Notes

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 0000
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 00000
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 000001
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 0000011
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

Notes

Notes

Notes

Notes

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 00000111
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The | Operator
Animation

The Bitwise | Operator – an Example
5 | 3 = 00000101 | 00000011 = 00000111 = 7
Similarly to & operator the | operator evaluates every pair of bits in both
of its arguments. However if both bits in a specific pair are cleared the bit
on the same position in the result is also cleared. Otherwise it is set.

24 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 =
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 0
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

Notes

Notes

Notes

Notes

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 00
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 000
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 0000
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 00000
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

Notes

Notes

Notes

Notes

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 000001
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 0000011
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 00000110
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

The ^ Operator
Animation

The Bitwise ^ Operator – an Example
5 ^ 3 = 00000101 ^ 00000011 = 00000110 = 6
The bitwise exclusive or (^) operator is similar to the previously described
bitwise operators, but in its case, if both bits in a specific pair have different
value the resulting bit is set, otherwise it is cleared.

25 / 46

Notes

Notes

Notes

Notes

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 =
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 1
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 11
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 111
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

Notes

Notes

Notes

Notes

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 1111
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 11111
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 111110
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 1111101
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

Notes

Notes

Notes

Notes

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 11111010
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The ~ Operator
Animation

The Bitwise ~ Operator – an Example
~ 5 = ~ 00000101 = 11111010 = 250
This bitwise operator is unary. It flips all bits in its argument.

26 / 46

The << Operator
Illustration

The Bitwise « Operator – an Example
5 << 2 = 00000101 << 2 = 00010100 = 20
The << operator shifts values of all bits of its first argument to the left.
The values are shifted as many positions as it is indicated by the second
argument. In the result the values of the first argument’s most significant
bits are dropped and the least significant are padded with zeros. The
shifting to the left is equivalent to the multiplication by a power of two.
In the example it is the 22, so the 5 is multiplied by 4. The operator can
only be applied to integers.

27 / 46

The >> Operator
Illustration

The » Operator – an Example
5 >> 2 = 00000101 >> 2 = 00000001 = 1
The >> operator shifts values of all bits in its first argument to the right.
The values are shifted as many positions as it is indicated by the second
argument. The least significant bits of the first argument are dropped. The
most significant bits are padded according to the sign of the argument. If
it is negative number, than the bits are padded with ones, otherwise with
zeros. Such an operation is equivalent to the integer division by a power
of two, with the exception of negative numbers. For example, the result of
shifting −1 will always be −1, no matter how many positions the number
is shifted. In the example the 5 is divided by 4. The fraction part of the
result is truncated. The result is always an integer and the operator can
only be applied to integers.

28 / 46

Notes

Notes

Notes

Notes

Bitwise Operators
Summary

The symbols of bitwise and logical operators look very similar and thus
may be confusing. Burce Eckel, the autor of ”Thinking in Java” book
devised a rule, that can help to apply the right operator: ”Bits are small,
so only one character is needed for a bitwise operator.”

29 / 46

The Ternary Operator

The ternary operator (conditional operator) is similar to the conditional
statement that will be discussed in the next lecture. Unlike the statement,
the operator yields a result. The pattern shows how to apply the operator:

variable=condition?first_expression:second_expression;

If the condition evaluates to truth, the operator yields the result of the
evaluation of the first expression, otherwise it will return the result of
the evaluation of the second expression. The result will be stored in the
variable. It is possible to skip the assignment, if only the side-effect of
evaluation of the second or the first expression is of interest.
int a=5, b=3, max;
int main(void)
{

max=(a>b)?a:b;
return 0;

}

30 / 46

Type Casting

Type casting is used for changing the type of a value. Type conversion
may be implicit or explicit. The former one is made by compiler without
participation of the programmer. The later is forced by the programmer
with the use of the casting operator.
int a;
int main(void)
{

a=12.3;
return 0;

}
In the example the original type of the 12.3 number, i.e. double is
implicitly converted to int. It means that the fraction part of the number
will be lost. Such a side-effect always happens when a ”larger” type is
converted to a ”smaller” one.

31 / 46

Type Casting
Explicit Conversion

In some cases it is necessary to force the type conversion. It can be
accomplished with the use of the cast operator, i.e. by placing the name of
the desired type in the parentheses before a variable or an expression.
double a;
int x = 4, y = 3;
int main(void)
{

a=(double)x/y;
return 0;

}
In the example the type of the value of the x variable is converted to the
double. Thanks to that the result of division is a floating-point number,
not an integer with truncated fraction part.

32 / 46

Notes

Notes

Notes

Notes

The Address Operator

The address operator returns the memory address of the variable that it
is applied to. The symbol of an address operator is &, just the same as
the bitwise and. The compiler recognizes those operators by the context
in which they are used. The address operator is unary and the bitwise and
operator is binary. The memory address is needed by the scanf() function
to store in a variable the data acquired from a keyboard. But this is only
one of many applications of the address operator.

33 / 46

The sizeof Operator

The sizeof operator returns the size of variable that it is applied to. The
size is in bytes. It is preferred to put the name of variable in parentheses,
but it is not necessary. Also instead of variable’s name, the identifier of its
type may be used.
long unsigned int a,b,c;

int main(void)
{

a=sizeof b;
a=sizeof(c);
return 0;

}

34 / 46

Operators Precedence

The precedence of operators in the C language is defined by their priorities.
However, it may be changed with the use of parentheses. As for the
discussed operators the post-increment and the post-decrement operators
are of the highest priority. Then, the pre-increment and pre-decrement
operators. Next, all the unary operators (including the sizeof and cast
operators). Later, all the arithmetic operators, just like in the mathematics.
Subsequently, the bitwise shift operators and next the relational operators
(the equality and inequality operators have lower priority than the rest of
them). Later the bitwise operators (in order: the and, the exclusive or and
the or) and after them the boolean operators, in the same order, except
for exclusive or, which is nonexistent. Next goes the ternary operator. The
lowest priority have the assignment operator and assignment shorthands.

35 / 46

Basic Input/Output Operations

In this part of the lecture the scanf() and printf() functions will be
discussed. Both of them are defined in the stdio.h header file. The
scanf() function allows the program to store in a variable a value typed
by the user on the keyboard. The printf() function displays values on a
computer screen. Other input/output functions will be discussed in later
lectures.

36 / 46

Notes

Notes

Notes

Notes

The scanf() Function

The scanf() function allows the user to enter a value to a variable with
the use of a keyboard.
#include<stdio.h>
int a;
int main(void)
{

scanf("%d",&a);
return 0;

}
In the simplest case the function takes two arguments that are separated
by a comma. The first one is a format string which defines the type of
the entered value. It consists of a conversion specifier placed in quotation
marks. The conversion specifier is a single character or sequence of char-
acters prefixed by a percent sign (%). The second argument is the address
of the variable, where the value should be stored.

37 / 46

The scanf() Function
The Most Important Conversion Specifiers

The table contains examples of conversion specifiers that will be used
during the lectures.

Conversion Specifiers Description
%d A decimal integer of the int type.
%ld A decimal integer of the long int type.
%hd A decimal integer of the short int type.
%hhd A decimal integer of the char type.
%u A decimal natural number of the unsigned int type.
%lu A decimal natural number of the unsigned long int

type.
%hu A decimal natural number of the unsigned short int

type.
%hhu The decimal natural number of the unsigned char

type.
%c A character.
%f A floating-point number of the float type.
%lf A floating-point number of the double type.

38 / 46

The scanf() Function
Entering Single Characters

When applying a scanf() function for entering several single characters
the programmer has to remember that each of them is confirmed by the
Enter key, which also leaves a single character that can be read by sub-
sequent calls of the scanf() function. To avoid this unwanted effect a
solution presented in the listing may be applied.
#include<stdio.h>
char a,b;
int main(void)
{

scanf("%c",&a);
scanf(" %c",&b);
return 0;

}
The solution consist in adding a space between the first quotation mark
(") and the percent sign (%) in the second conversion specifier.

39 / 46

The printf() Function

The printf() function is similar to the puts() function. Both of them
display a string (a series of characters in quotation marks) on screen. How-
ever, the printf() function does not move the cursor to the beginning of
the next line. Moreover, it can display values of variables and expressions.
To this end the programmer has to place in the format string as many
conversion specifiers as values she or he wants to display. Then, after the
string she or he has to place all the values, variables and expressions and
separate them by commas.

40 / 46

Notes

Notes

Notes

Notes

The printf() Function
An Example

#include <stdio.h>

int a,b;

int main(void)
{

puts("Please, enter an integer:");
scanf("%d",&a);
puts("Please, enter a second integer");
scanf("%d",&b);
printf("%d & %d = %d\n",a,b,a&b);
return 0;

}

41 / 46

The printf() Function
Formatting Strings

Formatting String Description
%d A decimal integer of the int type.
%ld A decimal integer of the long int type.
%u A natural number of the unsigned int type.
%c A character.
%f A floating-point number of the double type. The string may contain

additional information about formatting, for example %.3f means that
only the first three digits of the number’s fraction part will be displayed.

%lf A floating-point number of the long double type. It also may contain
additional information about formatting.

%e, %E A floating-point number of the double type expressed in the scientific
notation, for example 3e-9 (for the %e formatting) or 3E-9 (for the
%E formatting).

%le, %lE A floating-point number of the long double type expressed in the
scientific notation (please, note the examples above).

%x, %X A natural number in hexadecimal, for example a5 (for the %x format-
ting) or A5 (for the %X formatting).

%o A natural number in octal.

42 / 46

The printf() Function
Escape Sequences

For moving the cursor to beginning of the next line on the screen or display-
ing a tabulator, escape sequences have to be used. These usually consist
of two characters, like a backslash and an another character. The table
contains descriptions of some of them.

Escape Sequence Description
\n A newline character.
\r A beginning of the line character.
\\ The \ character (A single \ sign will be displayed on

the screen.
\" The quotation mark.
\t The tabulator.
%% The percent.

43 / 46

Questions

?

44 / 46

Notes

Notes

Notes

Notes

Thanks

Many thanks to Grzegorz Łukawski, PhD and Leszek Ciopiński, PhD for
helping me to complete the Polish version of this slides.

45 / 46

The End

Thank You for Your attention!

46 / 46

Notes

Notes

Notes

Notes

	Initialization of a Variable
	Constants (Once Again)
	Operators
	Relational Operators
	Arithmetic Operators
	Boolean Operators
	Bitwise Operators
	The Ternary Operator
	Type Casting
	Other Operators
	Operators Precedence

	Basic Input/Output

