
.

......

Operating Systems 2
Interrupts Handling

Arkadiusz Chrobot

Department of Computer Science

April 4, 2020

1 / 29

Outline

...1 Introduction

...2 Hardware Structure

...3 Interrupt Servicing

...4 Interrupt Handlers

...5 Interrupt Handlers

...6 Message Signaled Interrupts

...7 Interrupts Control

2 / 29

Introduction

Introduction

Interrupts are a vital part of every computer system. System calls
are one of the examples of their applications. They are also used
for handling exceptions and communication with i/o devices. The
interrupts system is very hardware dependent. This lecture gives a
general overview of the interrupts handling in the Linux kernel. The
more advanced topics, like inter-processor interrupts or interrupts
balancing in a multiprocessor systems are not discussed here.

3 / 29

Introduction

Interrupts Overview
There are two main types of interrupts:

exceptions Those are high-priority interrupts associated with im-
portant events, like integer division by zero, that re-
quire immediate handling by the cpu, and cannot be
ignored. Exceptions are usually synchronous, which
means that they can occur only when a special part
of code in performed. The kernel functions that han-
dle exceptions are executed in the process context and
make use of value returned by the current macro.

hardware interrupts Those interrupts are used by the i/o devices
to signal that they require servicing by the cpu. They
are asynchronous, which means they can occur at any
time. Kernel functions that handle those interrupts
must act quickly, thus they are performed in a special
context called interrupt context. Hardware interrupts
are the main topic of this lecture.

4 / 29

Hardware Structure

Hardware Structure
The interrupt system needs a hardware support. The general design
of such hardware in a uniprocessor computer system (i.e. a computer
system with only one cpu with only one core) is shown in the figure
1. Each i/o device has a special physical line called an Interrupt
Request Line or irq line for short, that connect it with a special
integrated circuit called Programmable Interrupt Controller or pic
for short. Each irq line has a unique number (usually a natural
number) that allows the pic to identify the source of the interrupt.
The i/o device signals the interrupt by changing the state of the line.
The pic detects the change, determines the number of the interrupt
and its priority and notices the cpu, which performs a special kernel
function called an interrupt handler or interrupt service routine that
services the interrupt. The pic allows kernel programmers to change
the priority of interrupts. The described interrupt system uses a
technique known as vectored interrupt, to quickly detect the source
of the interrupt.

5 / 29

Hardware Structure

Hardware

..

cpu

.

pic

.

i/o device

.

irq 0

Figure 1 : Generic Hardware Structure for Interrupts

6 / 29

Hardware Structure

Hardware Structure

The vectored interrupts work correctly, only when each i/o device
has its own irq line. Unfortunately, some of the contemporary
computer systems (notably those based on x86 cpus) have limited
number of those lines, so they allow devices to share some of the
lines. This means that the vectored interrupt technique is combined
with the polling interrupt technique. Each time when the interrupt
is signaled on a shared line, the kernel has to check which of the de-
vices has done it. This is a time-consuming task. The Linux kernel
programmers had to take into account all differences in the design
of the interrupt hardware support among many computer systems
or even different versions of the same system. For example in the
x86 based computers the pic changed from simple pic to Advanced
Programmable Interrupt Controller (apic). Moreover, in multipro-
cessor systems each cpu has its own apic called lapic.

7 / 29

Interrupt Servicing

Interrupt Servicing
To address those differences the Linux kernel programmers has split
the part of kernel responsible for handling interrupts into three lay-
ers:
high-level interrupt service routines it is a set of kernel functions

responsible for actually processing the interrupt,
interrupt flow handling part of the kernel code that takes care of

the handling the differences between servicing level-
triggered, edge-triggered, (see fig. 2) per-cpu, and
other types of interrupts,

chip-level hardware encapsulation this layer is a low-level layer that
is responsible for handling pics in different computer
systems or sometimes in the same system.

All those layers are linked by the most important data structure of
the kernel interrupt handling subsystem: the interrupt descriptors
array called irq_desc. Each element of the array stores pointers to
isrs and functions handling the pics.

8 / 29

Interrupt Servicing

Interrupt Signalling

.. level.

ris
in

g
ed

ge

.

level

.

falling
edge

Figure 2 : Binary Signal

9 / 29

Interrupt Servicing

Interrupt Processing

When the cpu receives the interrupt signal, it automatically switches
to the system mode (if it wasn’t already in that mode) and per-
forms a cpu-specific kernel code written in assembly language, that
saves the registers on the process kernel stack and prepares the en-
vironment for performing functions written in the c language. The
assembly code is placed in the entry.S file specific to a given hard-
ware platform (in case of x86 cpus it is entry_32.S file for the
32-bit processors and entry_64.S file for the 64-bit processors). Af-
ter the assembly code exits the control flow on the most hardware
platforms is passed to the do_irq() function. The exceptions are
the computers based on Sparc, Sparc64 and Alpha cpus, but they
are not discussed in the lecture.

10 / 29

Interrupt Servicing

Interrupt Processing
The do_irq() Function

The implementation of the do_irq() function is also hardware plat-
form specific, but its behaviour is generally similar. It first stores the
values of registers from the kernel stack to a structure of the struct
pt_regs type (which is cpu-specific). Then it uses the value of
one of the registers to determine the number of the interrupt and
uses it as an index in the irq_desc array. Next, the do_irq()
function blocks the irq line associated with the interrupt by using
the functions from the chip-level hardware encapsulation layer that
are pointed by the interrupt descriptor. For example, in case of
32-bit x86 hardware platforms it uses the mask_and_ack_8259A()
function. For some of the interrupts it has to disable the whole in-
terrupt system (or at least the interrupt system local for the cpu
that services the interrupt). After blocking the irq line the function
checks if there is any isr registered for this interrupt. If so, it calls
the routine.

11 / 29

Interrupt Servicing

Interrupt Processing
The do_irq() Function

If there is more than one isr registered for the specific interrupt, the
do_irq() function invokes them in sequence and expects that one
of them will return the irq_handled value, which means, that the
interrupt has been serviced. If no isr has been registered for the in-
terrupt the do_irq() function returns signaling an error. When the
interrupt is handled the add_interrupt_randomness() function is
called to supply the kernel entropy pool with new values (explained
latter), unlocks the irq line or re-enables the whole (local) interrupt
system and returns. Most of the activities are usually not preformed
directly by the do_irq() function by delegated to other functions
such as handle_irq_event() and ret_form_intr().

12 / 29

Interrupt Handlers

Registering and Unregistering Interrupt Handler

From the device driver programmer the most important kernel func-
tions associated with interrupt handling are those that allow her or
him to register or unregister the isr. The former has the following
prototype:
int request_irq(unsigned int irq, irq_handler_t handler,
unsigned long irqflags, const char *name, void *dev)

The function returns zero on success and the -ebusy value on failure.
It not only registers the isr but also activates the irq line associated
with the interrupt. The function takes five arguments. The first one
is the number of the interrupt, the second is the address of the isr,
the third one is a flag, or a result of the bitwise or of flags that do
not contradict.

13 / 29

Interrupt Handlers

Registering and Unregistering Interrupt Handler
In the linux/interrupt.h header file are defined many flags for
registering the interrupt handlers. The most interesting ones are
the following: irqf_timer — the isr will handle a timer interrupt,
irfq_percpu – the isr will be performed only on specific cpu in a
multiprocessor hardware platform. irqf_oneshot the irq will not
be re-enabled immediately after the isr exits, irqf_shared the isr
is registered for a irq lined shared by several i/o devices and also
by several other isres. In the past also two others where used. The
irqf_disable flag, also called sa_interrupt in older kernel ver-
sions, was used for registering isrs that required disabling the whole
interrupt system before they could be performed. This flag has been
removed from the kernel since version 4.1. The irqf_sample_random
flag was used to indicate that the information about the frequency of
the registered interrupt will supply the kernel entropy pool, which is
used for implementing two cryptographically secure pseudorandom
number generators.

14 / 29

Interrupt Handlers

Registering and Unregistering Interrupt Handler

Those generators are available to user-space software via two char-
acter device files called /dev/random and /dev/urandom. Those file
can be read just like other regular text files. The first one blocks
the read operation when the requested amount of entropy is not
available and the second one never blocks. They both generate se-
cure pseudorandom numbers, but in very rare cases (usually when
the numbers are needed during the initialization of the kernel) it is
more safe the use the /dev/random generator. Not all interrupts
were used for supplying the kernel entropy for those generators.
The timer interrupt is too regular to be a source for randomness.
The network card interrupt seems to be a good candidate, but this
source is vulnerable to tampering. Hence a flag was needed to indi-
cate which interrupts will be sources of randomness. But, Theodore
Ts’o, the author of those generators has added a patch to the kernel
that made the flag obsolete.

15 / 29

Interrupt Handlers

Registering and Unregistering Interrupt Handler
Nowadays, all interrupts contribute to the entropy pool, but not
directly. When an interrupt is handled the kernel reads several
values from different places that are good sources of randomness,
such as some of the cpu registers. The forth argument of the
request_iqr() function is a string that is a name of the device
that will signal the interrupt. The name is used in proc/interrupts
file1. It is a text file that contains statistics about all handled (or
not) interrupts, including the irq line number, the cpu number,
the interrupt type, the pic name, the device name, etc. Some other
statistics can be found in the proc/irq directories. Finally, the fifth
argument can be null if the irq line is not shared. If it is, than it
should be an address that uniquely identifies the isr, for example
an address of a structure associated with the device driver that con-
tains the isr. This address is required for correctly unregistering
the isr.

1The content of the file can be displayed on the screen by issuing the cat
/proc/interrupt command

16 / 29

Interrupt Handlers

Registering and Unregistering Interrupt Handler

To unregister the isr the device driver programmer can uses the
free_irq() function which has the following prototype:

void free_irq(unsinged int irq, void *dev)
The first argument for the function is the irq line number, the
second can be null if the line is not shared. Otherwise it must
be the same address, which was given as the fifth argument to the
register_irq() function.

17 / 29

Interrupt Handlers

Registering and Unregistering Interrupt Handler
Threaded Interrupts

In the 2.6.29 kernel release a new way of servicing interrupts by
the kernel was added. It is so-called threaded interrupts and origi-
nates from the branch of the kernel code prepared for hard real-time
systems. Today it is also available the main kernel branch. The
main idea behind this new mechanism is that the isr should exit as
quickly as possible, because it cannot sleep. The rest of the work
associated with handling the interrupt is delegated to a special ker-
nel thread. To register a thread and the isr for handling a specific
interrupt the request_threaded_irq() function is needed, which
has the following prototype:
int request_threaded_irq(unsigned int irq, irq_handler_t
handler, irq_handler_t thread_fn, unsigned long flags,

const char *name, void *dev)
The function takes the same arguments as the request_irq() func-
tion, except for the additional third one, which is a pointer to
a kernel thread function. The isr should be registered with the
irqf_oneshot flag. 18 / 29

Interrupt Handlers

Interrupt Handlers

In the Linux kernel interrupt handlers or isrs are a kernel functions
written in a c language, which may also contains some assembly
code. The definitions of those functions are part of device drivers
responsible for handling the peripheral devices. Those drivers are
usually implemented as kernel modules. The prototype of the isr
must follow this pattern:

static irqreturn_t intr_handler(int irq, void *dev)
The name of a real isr should be different than the one in the pat-
tern. By the first parameter of the function is passed the interrupt
number. The value of the second parameter is important only when
the isr is registered for a shared irq line. It is the same unique
address which was used for registering the isr. The irqreturn_t
type is defined with the use of the typedef keyword and depending
of the kernel version it is a int or void type. It was introduced for
backward compatibility reasons.

19 / 29

Interrupt Handlers

Interrupt Handlers

The isr can return one of the following values: irq_none — the in-
terrupt has not been serviced by the isr, irq_handled — the inter-
rupt has been serviced by the isr. To simplify returning of those val-
ues the Linux kernel programmers added a irq_retval(x) macro,
which expands to irq_handled when its argument is non-zero, and
to irq_none when it is zero. The isrs associated with threaded
interrupts can return a third value called irq_wake_thread which
causes the kernel to activate the thread associated with the handling
of the specific interrupt. In the past the isr had another parameter
which was a pointer to the structure of the struct pt_rest type.
However, not all isrs used registers values. To spare the place on the
process kernel stack, the parameter has been removed. Those isrs
that need values of registers can obtain the address of the registers
structure with the use of the get_irq_regs() function.

20 / 29

Interrupt Handlers

Interrupt Handlers
The most important thing about Linux isrs is that they are per-
formed in the interrupt context. That means that their behaviour
undergoes several limitations. Primarily they must act quickly, be-
cause the irq could interrupted some very important activities in
kernel or in user-space. The isrs are not associated with any process,
hence they cannot invoke any functions that could cause the pro-
cess to sleep. For example the isr cannot call the register_irq()
function to register another isr. To put it simply the isrs cannot
sleep. To address those limitations the interrupt handling code in
Linux kernel is split into two parts, just like in the case of other
modern operating systems. The first part is called top half and the
other bottom half, although they are not necessarily equal. In the
top half the most important activities associated with handling the
interrupt, that cannot be postponed are performed. So, the top half
is just another name for the isr. The other activities are performed
in the bottom half, which in reality is not a single mechanism, but
a set of such mechanisms. 21 / 29

Interrupt Handlers

Interrupt Handlers
The bottom halves will be discussed in the next lecture. The threaded
interrupts are another approach to solve those issues with interrupt
handling. The isrs do not use the value returned by the current
macro. As it was mentioned already, they are not associated with
any process, so they do not need the descriptor of the current pro-
cess, but they use the kernel process stack, just like other kernel
functions. It should be reminded that the size of the stack is limited
to only two pages, so in case of x86 cpu family it is 4KiB and for
the Alpha family processors it is 8KiB. Moreover, there is a possi-
bility to limit that size to only one page, which is useful in the mpp
(Massively Parallel Processing) systems. In that case however the
isrs get a separate stack for their use only.
The isrs don’t have to be reentrant, because the Linux kernel doesn’t
support reentrant interrupts, i.e interrupts that can interrupt ser-
vicing of other interrupts. However, in multiprocessor systems the
isr may use some synchronization methods if it shares resources
with some other code. 22 / 29

Message Signaled Interrupts

Message Signalled Interrupts

Moder devices that use such buses as usb, pci, pci-express need a
lot of interrupts, that are assigned to them dynamically (some of the
interrupts are assigned statically for historical reasons). This means
that a lot of irq lines has to be shared between those devices, which
leads to many issues. To address them the hardware engineers intro-
duced so-called Message Signalled Interrupts (msi for short). Those
interrupts are not signalled by changing the state of a physical irq
line but by storing a short message (a few bytes) to a specific mem-
ory address. The first version of this solution was introduced in the
pci 2.2 standard. In the pci 3.0 standard the possibility of indi-
vidually masking those interrupts was added. This version of the
standard also allows the devices to have several individually config-
ured interrupts. This solution is called msi-x. Starting from the 4.8
kernel version, Linux provides an api for using those interrupts.

23 / 29

Message Signaled Interrupts

Message Signalled Interrupts
The api consists of three functions:
pci_alloc_irq_vectors() the function allocates interrupt vectors

for the pci device. It takes four arguments. The first
one is an address of the struct pci_dev structure
associated with the device, the second one is the min-
imal number of vectors (if required), the third one is
the maximal number of vectors. The last argument is
one or more flags. On success it returns zero, otherwise
the -enospc value.

pci_irq_vector() the function associates an interrupt number with
the pci device. It takes two arguments, the address of
the struct pci_dev type structure and the interrupt
number. It returns zero on success and non-zero oth-
erwise.

pci_free_irq_vectors() the function frees the allocated interrupt
vectors. It returns no value and as an argument takes
the address of a struct pci_dev type structure. 24 / 29

Message Signaled Interrupts

Message Signalled Interrupts
The following flags can be passed to the pci_alloc_irq_vectors()
function:
pci_irq_legacy the pci device will used the interrupts signaled by

the irq lined, instead of msi (default mode),
pci_irq_msi the pci device will use the basic msi,
pci_irq_msix the pci device will use the msi-x,
pci_irq_all_types the pci device will use the any available inter-

rupt kind,
pci_irq_affinity in a multiprocessor system the function will spread

the interrupts to all available cpus.
The pci_irq_vector() function is used for obtaining an inter-
rupt number for which an isr can be registered with the use of
the request_irq() or request_threaded_irq() function. Prior
to 4.8 kernel version the following (now obsolete) functions where
used for the msis: pci_enable_msix_range(), pci_enable_msi(),
pci_disable_msi(), pci_enable_msix_exact(), pci_disable_msix().

25 / 29

Interrupts Control

Interrupts Control
The following kernel macros and functions are used for controlling
the interrupts system:
local_irq_disable() switches off a local interrupts system,
local_irq_enable() switches on a local interrupts system,
local_irq_save(unsigned long flags) saves the current state of

the interrupts and then disables them,
local_irq_restore(unsigned long flags) restores the given state

of the interrupts,
disable_irq_nosync(unsigned int irq) disables a given irq line

and immediately returns,
disable_irq(unsigned int irq) disables a given irq line and en-

sures no interrupt handler is running for that line be-
fore returning,

enable_irq(unsigned int irq) enables the line switched of by
the disable_irq_nosync() function,

26 / 29

Interrupts Control

Interrupts Control

synchronize_irq(unsigned int irq) enables the irq line disabled
by the disable_irq() function,

irqs_disabled() returns nonzero if local interrupts system is dis-
abled,

in_interrupt() returns zero in process context and nonzero in in-
terrupt context,

in_irq() returns nonzero if invoked in isr, otherwise zero.

The local_irq_disable() and local_irq_enable() functions re-
placed functions cli() and sti() which globally disable or enabled
all interrupts in the computer system, which was suboptimal. The
synchronize_irq() function has to be called as many times as
the disable_irq() function was invoked. The same goes for the
enable_irq() and the disable_irq_nosyc() functions.

27 / 29

The End

Questions

?

28 / 29

The End

The End

Thank You for Your attention!

29 / 29

	Introduction
	Hardware Structure
	Interrupt Servicing
	Interrupt Handlers
	Interrupt Handlers
	Message Signaled Interrupts
	Interrupts Control

