
.

......

Operating Systems 2
System Calls

Arkadiusz Chrobot

Department of Computer Science

March 22, 2020

1 / 20

Outline

...1 System Calls Background

...2 Application Programming Interface

...3 Invoking System Calls

...4 Definitions Of System Calls

...5 Adding New System Call

...6 Summary

2 / 20

System Calls Background

System Calls Background

System Calls are kernel functions that can be called by user-space
processes. They create an interface between user-space software
and the operating system. For safety reasons modern kernels do not
allow user processes to directly interact with resources, such as hard-
ware or even with themselves (the shared memory is an exception).
However, they can accomplish such tasks, and many other (like cre-
ating new processes) indirectly, using services provided to them by
the operating system with the help of system calls. That has several
advantages. The system calls simplifies usage of resources, especially
hardware resources, for the user-space software. Programmers who
create such programs don’t have to know or worry about details of
handling hardware. They just delegate the work to the operating
system. Moreover, system calls are crucial in implementing virtu-
alization of resources, like multitasking processors and the virtual
memory.

3 / 20

Application Programming Interface

Application Programming Interface

User processes usually do not directly invoke system calls. Instead
they use something with is called an Application Programming Inter-
face (an api, for short). It is a set of functions, variables and other
software constructs that allow the processes to perform the most
common operations and also cooperate with the operating system.
Linux has an api defined by the posix and sus standards, which
is inherited from the Unix system. It is implemented (mostly) in a
form of the Standard C Library called glibc (libc in Unix). Some of
the functions from this library do not use any system calls (like the
strcpy() function), some of them are simple wrappings for a sys-
tem call (like the write() function) and some of them perform some
other operations beside invoking a system call (like the printf()
function).

4 / 20

Invoking System Calls

Invoking System Calls

System calls cannot be directly invoked by the user processes be-
cause they are part of the kernel-space. Modern cpu provide a
special instruction generally called a software interrupt1, which can
be performed by a user-space software and causes the cpu to switch
to the system mode and give the control to the kernel, just like when
serving a hardware interrupt or an exception. The instruction has
many names, depending on the cpu. In case of the PowerPC pro-
cessors it is called sc. In case of 32-bit Intel and amd processors it is
called int and is followed by an operand (an argument) which is the
number of the interrupt (0x80 — 128 in decimal, in case of Linux).
Newer 32-bit Intel processors, starting from Pentium II provide the
sysenter instruction. The 64-bit amd and Intel processors have
the syscall instruction.

1This name is ambiguous in Linux, so be careful when using it.
5 / 20

Invoking System Calls

Invoking System Calls
Intel And amd 32-Bit cpus

The software interrupt is handled by a special kernel function named
system_call(). Its implementation and behaviour depends on the
cpu on which the kernel is running. For the 32-bit Intel and amd
cpus it is defined in a file called entry_32.S file (the .S extension
indicates that this file contains assembly code). The system_call()
function is also a call gate for all of the system calls. After being
invoked it first checks the content of the eax register. It should
contain the system call number. Each system call has a unique
number which is also an index in the sys_call_table array. This
array contains addresses of all system calls and it is defined in the
syscall_table.S file which is included in the entry_32.S file. This
means that the array is also implemented in assembly code. If the
number in eax register is incorrect — bigger than expected — the
system_call() function returns the -enosys value, signaling that
the user process tried to call an non-existing system call and exits.

6 / 20

Invoking System Calls

Invoking System Calls
Intel And amd 32-Bit cpus

If the system call number in the eax register is however correct then
the system_call() function pushes on the process kernel stack the
content of the ebx, ecx, edx, esi, esi registers. Those registers
store arguments for the system calls. Next, it multiplies the system
call number by 4 (the size of the 32-bit address expressed in bytes)
and applies the result as an offset in the sys_call_table to locate
the address of the system call. Finally, the system_call() func-
tion uses the address to invoke the system call using regular call
instruction. When the system call exits it returns a result in the eax
register and passes the control back to the system_call() function.

7 / 20

Invoking System Calls

Invoking System Calls
Intel And amd 64-Bit cpus

In case of Intel And amd 64-bit cpus the system_call() function
is defined in the entry_64.S file and the sys_call_table array in
the unistd_64.h file which is included in the syscall_64.c file,
which on turn is included in the entry_64.S file. The system call
number is stored in the rax register, where also the system call
returns its result. The system call number is multiplied by 8 (64-bit
address size expressed in bytes) instead of 4. The arguments for the
system call are stored in the rdi, rsi, rdx, r10, r9 and r8 registers,
however they are not pushed on the process kernel stack.

8 / 20

Definitions Of System Calls

Definitions of System Calls
System Call Header

System calls are regular kernel functions running in the process con-
text, but they are defined differently. Names of those functions start
with the sys_ prefix, so for example, the name of the function that
implements the write() system call is actually sys_write(). Every
system call returns a long type value that usually, but not always,
signals a success or a failure. In that case zero usually means that
the system call accomplished its task successfully and a negative
number denotes the reason of the failure. However, for some system
calls the meaning of those numbers can be different. For 32-bit x86
cpus the system call can have up to 5 parameters and for 64-bit
x86 cpus, up to 6. Those parameters are used for passing the argu-
ments originally stored in registers. The system call header contain
the asmlinkage macro which informs the compiler that arguments
for the function are passed by the process kernel stack. If the cpu
(like the 64-bit x86 cpus) does not require this, then the asmlinkage
macro is empty. 9 / 20

Definitions Of System Calls

Definitions of System Calls
System Call Header

To simplify creating headers of system calls, Linux kernel program-
mers added macros called syscall_definen, where n is the number
of parameters the system call requires, and ranges from 0 to 5 or 6,
for Intel and compatible cpus. If the system call does not need any
parameters the syscall_define0 macro can be applied for build-
ing its header. If the system call requires 2 parameters then the
syscall_define2 macro can be used for creating its header. How-
ever, each of the macros requires 2 · n + 1 arguments, where the
n is the number of system call parameters. The first argument is
the name of the system call (without the sys_ prefix) followed (if
needed) by a pair or pairs consisting of the parameter type and
name.

10 / 20

Definitions Of System Calls

Definitions of System Calls
System Call Body — General Remarks

Almost every system call has a side effects, which means that it
changes the state of the kernel. Since their run in the process context
they get access to the descriptor of the process that invoked them
using the current macro and can set that process in one of the
waiting states. In Linux terminology it is called “putting a process
to sleep”. If the system call requires more than 5 or 6 arguments, or
the arguments do not fit in registers, then they values can be stored
in the memory and the starting address of the memory can be passed
by one of the registers. Each system call that gets arguments has
to verify them before using. Information that comes from the user-
space cannot be trusted. Arguments that are pointers have to be
especially carefully checked.

11 / 20

Definitions Of System Calls

Definitions of System Calls
System Call Body — General Remarks

The verification of a pointer is performed in three steps:
...1 Does the pointer point to a memory area in the user-space?
...2 Does the pointer point to a memory area that belongs to the

process which invoked the system call?
...3 Depending on the operation that is to be performed the system

call checks if the invoking process has permissions to read, write
or execute for the memory area.

The system call may also have to check the permissions of the invok-
ing process for other resources. Since the 2.6 version of the kernel it
can use the capable() function to this end. The function is defined
in the linux/capability.h header file together with constants that
can be used as its arguments and which describe different permis-
sions. If the process has a given permission then the function returns
a non-zero value, otherwise it returns zero. Before the function was
introduced, system calls only checked if the invoking process be-
longed to a privileged user by calling the suser() function. 12 / 20

Definitions Of System Calls

Definitions of System Calls
System Call Body — General Remarks

If data have to be copied from a user-space memory area to a kernel-
space memory area then the copy_from_user() function can be
used. If the data have to be copied in the opposite direction then the
copy_to_user() function can be applied. Both functions take three
arguments: the starting address of the destination memory area, the
starting address of the source memory area and the number of bytes
that have to be copied. Also the meaning of the return value is the
same for both of them. On success they return zero, on failure the
return the number of bytes left to copy.
There is a special system call defined, named sys_ni_call(). It
only returns the -enosys value. This function is used for handling
system calls that were not implemented for a given hardware (for
example it is available for Intel processors, but not for PowerPC
cpus), or that were for some reason removed. Fortunately, the latter
happens not very often in the Linux kernel source code.

13 / 20

Definitions Of System Calls

Definitions of System Calls
The Return Value

When the system call exits, its result is stored in the eax or rax
register. From there it eventually gets to the errno variable in the
user-space. If the system call failed to accomplish its task then the
value then can be used by such a function like perror() to print on
the screen a human-readable description of the cause of the failure.

14 / 20

Adding New System Call

Adding New System Call

Adding a new system call is relatively easy. For example for the 32-
bit x86 cpus it requires defining the system call in one of the kernel
source code files associated with the part of the kernel related to
the system call, adding a new entry in the array of system calls
located in the syscal_table_32.S file, specifying the number of
the system call in the include/asm/unistd_32.h header file and
finally compiling and installing the kernel. The steps are similar
for the 64-bit x86 cpus, but adding the new entry to the system
call array and specifying the system call number requires only the
modification of the include/asm/unistd_64.h header file.

15 / 20

Adding New System Call

Adding New System Call
Invoking New System Call

Since no api function knows the new system call, no one will call it.
There is however a way of invoking such a system call from the user-
space. Before the 2.6.18 version of the kernel, there were available
macros called _syscalln, where n specifies the number of arguments
taken by the system call. Each of the macros required 2 · n + 2 of
its own arguments. The arguments where as follows: type of the
system call return value, name of the system call and optionally a
pair or pairs consisting of argument type and value. However, those
macros were not available for all hardware supported by Linux, and
since 2.6.18 version of the kernel they have been replaced by the
syscall() function, which takes one mandatory argument — the
system call number and any number of arguments required by the
system call. The function returns the same value as the invoked
system call.

16 / 20

Adding New System Call

Adding New System Call
Pros And Cons of Adding New System Call

Advantages:
...1 System calls can be relatively easy implemented and used.
...2 System calls in Linux are very efficient.

Disadvantages:
...1 A new system call has to be assigned the system call number

accepted by all Linux kernel programmers.
...2 The interface of the system call (the number and order of its

arguments) cannot change in the future.
...3 A system call may have to be defined for all hardware supported

by the Linux kernel.
...4 A system call should not be used as a communication device

for user-space processes.
...5 A system call cannot be defined as a part of a kernel module.

17 / 20

Summary

Summary

The original Unix operating system had about 100 system calls.
Linux has about 300 of them. The number differs for different hard-
ware supported by the kernel, but generally it does not change very
often. Most of them follows the philosophy of “doing one thing, but
doing it well”. As a counterexample the ioctl() system call can
be given. Adding new system calls should be avoided. Some of the
issues that initially are thought to be only tackled by introducing
a new system call to the kernel, can be solved with the help of the
properties of the device handling subsystem or filesystems.

18 / 20

The End

Questions

?

19 / 20

The End

The End

Thank You for Your attention!

20 / 20

	System Calls Background
	Application Programming Interface
	Invoking System Calls
	Definitions Of System Calls
	Adding New System Call
	Summary

