
.

......

Operating Systems 2
Process Address Space

Arkadiusz Chrobot

Department of Computer Science

June 1, 2020

1 / 15

Outline

...1 Introduction

...2 Process Address Space Organization

...3 Memory Descriptor

...4 Virtual Memory Areas Management

2 / 15

Introduction

Introduction

The Linux kernel manages its own address space, as well as the
address spaces of user-space processes. Each of them is given a
flat (linear) address space which by default is separated from the
address spaces of other processes. It means that any process cannot
read or modify data of other processes, even if it uses the same
addresses as them. However, Linux kernel makes it possible for
some of the processes to share their address spaces. That’s how
it implements user-space threads. Each address space of a process
is partitioned into intervals of addresses knowns as memory areas.
Every process can ask the kernel to add a new memory area to its
address space, but it cannot reference areas that are not its own or
violate the permissions (write, read or execute) of its own memory
areas. Otherwise the kernel will abort such a process and its user
will see the “Segmentation Fault” message on the screen.

3 / 15

Process Address Space Organization

Process Address Space Organization
Memory Areas

There are several types of memory areas:
text section it is a mapping of the part of executable file that con-

tains process code onto the memory,
data section it is a mapping of the part of executable file that con-

tains process initialized global variables,
.bss section it is a memory area where the zero page is mapped,

possibly multiple times; the area contains uninitialized
global variables,

stack this is an area for the process user-space stack; initially
the zero page is mapped here (usually multiple times),

memory mapped files files that have been mapped onto memory,
shared memory segments memory areas that enable shared mem-

ory,
anonymous memory mappings memory areas allocated for example

with the use of the malloc() function.
4 / 15

Process Address Space Organization

Process Address Space
Memory Areas

The .bss abbreviation means “by symbol started” and it is a name
used for historical reasons. The data section contains global vari-
ables with initial values other than zero. Those values are stored in
executable files. That’s why they are called “initialized”. The .bss
section contains global variables that initial value is zero. Those
values are not stored in the executable file, hence those variables
are called “uninitialized”.
The text sections, data sections and .bss sections are also used by
shared libraries also called shared objects. With each memory area
is associated a separate set of permissions. Memory areas don’t
overlap.

5 / 15

Memory Descriptor

Memory Descriptor
Information about an address space of a single process is stored in
its memory descriptor. It is a structure of the struct mm_struct
type, which is defined in the same file as the process descriptor
type. The memory descriptor has many members. Among them are
fields that store the start and end addresses of the text section, the
data section, the stack, the memory area that stores command line
arguments and the memory area that stores environmental variables.
If the value of the mm_count field is 1 then the address space specified
by the memory descriptor is shared by at leas two processes which
are threads. The exact number of those threads is store in the
mm_users field. The task_size field defines the address space size.
It has been added to the kernel to allow the 32-bit applications run
on 64-bit hardware platforms. Two fields of the memory descriptor
are associated with data structures that store the same information
but in different ways. The first one is the mmap field which stores an
address of list that stores data about all memory areas. The second
one is called mm_rb and stores an address of the red-black tree root.6 / 15

Memory Descriptor

Memory Descriptor
The tree stores the same data as the list, but searching in such a
tree is quicker than searching the list. On the other hand sequential
traversal is simpler in case of the list. In the Linux kernel 2.0 series
the data about memory areas were store in a list as long as the
number of those areas was less than 20. If it had exited this limit
then the data would have been reorganized into avl tree.
The kernel links all memory descriptors into a doubly linked list,
starting with the memory descriptor of the init (or its equivalent)
process. Also the address of a memory descriptor is stored in the
mm field of the descriptor of the process that owns the address space
specified by the memory descriptor. When a process forks, then a
new memory descriptor is allocated to its child with the use of the
allocate_mm macro and then the content of its memory descriptor
is copied to the memory descriptor of the child with the help of
the copy_mm() function. The allocation of the memory descriptor
is performed by the slab allocator.

7 / 15

Memory Descriptor

Memory Descriptor

If the clone() system call got the CLONE_VM flat as its argument,
then the new process will share the address space with its parent. In
other words those processes will be threads. In this case no memory
descriptor is allocated for this new process. Both of them will share
the same memory descriptor.
When a process or a thread exits then the exit_mm() function is
invoked that updates some statistics, performs some cleanup activ-
ities and calls the mmput() function that decrements the value of
the mm_users field in the memory descriptor. If the value reaches
zero, then the mmdrop() function is called, which decrements then
value of the mm_count filed in the memory descriptor. If the value of
the field reaches zero too, then the memory descriptor is deallocated
with the use of the free_mm() function.

8 / 15

Memory Descriptor

Memory Descriptor
The kernel-space threads or simply kernel threads do not have their
own address space, they share it with the kernel. Therefore they also
do not have memory descriptors. The value of their process descrip-
tor mm fields is null. However, kernel threads have to access memory
to run, so they use the memory descriptors of user-space processes
that were using the cpu before them. The memory descriptor of each
process stores information about kernel address space for the needs
of system calls. This information is the same for all processes, but
since the release of the 4.15 kernel version different page tables are
used in the kernel mode and in the user mode. This change has been
introduced by the kpti patch to mitigate the Spectre and Meltdown
vulnerabilities (see: https://meltdownattack.com/). The address of
last scheduled user-space process memory descriptor is stored in the
active_mm field of the kernel thread process descriptor. In case of
regular user processes the kernel uses the fields when the process
begins to run a different program — a different code loaded from
the executable file. 9 / 15

https://meltdownattack.com/

Virtual Memory Areas Management

Virtual Memory Areas Management
The subsystem that manages memory areas or more precisely virtual
memory areas (vma) has been developed with the use of object-
oriented techniques. Each virtual memory area is represented by
an object which is a structure of the vm_area_struct type. Aside
from “regular” fields this structure has a member which is a pointer
to a structure which fields are pointers to functions that perform
some operations on the virtual memory ares. In other words those
functions are methods and the latter structure is a method table.
The vma_start and vma_end fields of the virtual memory area object
store the start and end address of the memory area. The vm_flags
field stores flags that specify the properties and behaviour of pages
that are part of the virtual memory area. Among those flags are:
vm_read, vm_write, vm_exec — specify memory areas that can be
read, written or executed, vm_shared — denotes a memory area that
is shared, vm_io — indicates a memory ares where the input/output
registers of a device are mapped, vm_locked — specifies memory
area which pages are not swapped, vm_seq_read — specifies 10 / 15

Virtual Memory Areas Management

Virtual Memory Areas Management
a memory area where a file is mapped that offers only sequential
read, so the kernel can read some of its data in advance, i.e. before
the user-process request the data, to increase the efficiency of the
file read operation, vm_rand_read — denotes a memory area where
a file is mapped that offers both sequential and random access, so
reading its data in advance doesn’t bring any benefits. The object
method table is a structure of the vm_operations_struct. This
structure has several members that point to functions performing
operations on virtual memory area. Among those functions are:
open() — the function is invoked when a new virtual memory area
is added to the process address space, close() — the function is
invoked when a virtual memory area is removed form the process
address space, fault() — this function is called when the page
fault exception is risen, and the page exists, but is not present in
the memory, page_mkwrite() — it is also called when the page
fault exception is risen, but when then read-only page changes to
writable, access() — the function is called when some exceptions11 / 15

Virtual Memory Areas Management

Virtual Memory Areas Management
are risen while the address space of a specific process is being ac-
cessed. In earlier kernel versions the populate() function was avail-
able that was latter removed. The fault() function replaced the
nopages() function.
As it was earlier mentioned, virtual memory area objects are linked
into a list and a red-black tree. The tree is used by the find_vma()
kernel function, that finds a memory area, which contains address
given to the function as its argument, or an area that starts with
a greater address. If it fails to find such an area it returns null,
otherwise it returns the address of the virtual memory area object.
Similarly the find_vma_prev() function finds an area that is lo-
cated before the address that is this function argument. Finally,
the find_vma_intersection() function returns an address of the
object that specifies a virtual memory area that at least partially
overlaps the address interval formed by two addressed that are ar-
guments of this function.

12 / 15

Virtual Memory Areas Management

Virtual Memory Areas Management
The data about all virtual memory areas of a given process are stored
in the /proc/<pid>/maps file, where the <pid> denotes the pid of
the process. The same information can be displayed on the screen
in more human readable form with the use of the pmap command.
The data reveal that text sections, and read-only data sections can
be shared by processes as well as shared libraries.
A virtual memory area can be expanded or a new virtual memory
area can be created with the help of the do_mmap() function. Its
primary job is to map a file onto the memory. However, if the null
value is given as one of its arguments, instead of an address of a file
object, then the function will perform an anonymous mapping, i.e.
a zero page will be mapped in this area. This function is invoked
by the mmap2() and mmap() system calls. The former requires that
the offset in the mapped file is specified in the size of page units not
in bytes. The virtual memory area can be deleted is do_munmap()
function, invoked by the munmap() system call.

13 / 15

The End

Questions

?

14 / 15

The End

The End

Thank You for Your attention!

15 / 15

	Introduction
	Process Address Space Organization
	Memory Descriptor
	Virtual Memory Areas Management

