
.

......

Operating Systems 2
The Block i/o Layer

Arkadiusz Chrobot

Department of Computer Science

May 24, 2020

1 / 26



Outline

...1 Introduction

...2 Buffers

...3 The Block Input-Output Structure

...4 i/o Schedulers

...5 The New Block i/o Layer

2 / 26



Introduction

Introduction

Block i/o devices require a more complex handling than the char-
acter devices. There are several reasons for that. The block devices
offer a random access which means that it is possible to directly
specify a location on the medium from where data should be read
or where they should be written. This implies that there is a way
of changing the location of block device data pointer in both direc-
tions. All block i/o devices are equipped with a file system. The
still most frequently used block devices are hard disks, but there
are many more devices of that type (CD, DVD, other optic disks,
Solid State Devices and other flash memory devices). The access
time to those device (particularly the hard disk) is one of the most
important factors that have impact on the computer system over-
all efficiency. That’s why the Linux kernel programmers decided to
implement a whole separate subsystem for handling those devices,
which is called The Block i/o Layer.

3 / 26



Buffers

Buffers

Although the block i/o layer supports all block devices it has been
designed primarily for hard disks. The block devices store data in
units called sectors. The size of a single sector is usually 512B (there
are several exceptions, like CDs). Most of the i/o operations involve
more than one sector. Thats why modern operating systems tend
to use blocks instead of sectors. A single block is a sector or a group
of adjacent sectors. In the Linux kernel the block size is smaller
or equal to the size of a page. Each block that is involved in an
i/o operation has its buffer in the ram and each buffer has a buffer
header. The header stores all the information required for managing
the buffer. Its data type is define by the struct buffer_head
structure. Among the data kept in the header is the state of the
buffer store in the b_state field. This information is described by
one or several elements of the bh_state_bits enumeration.

4 / 26



Buffers

Buffers
Elements of bh_state_bits

The BH_Uptodate element means that the data in the block and in
its buffer are the same. The BH_Dirty element indicates that the
data in the buffer have been modified, but not yet written to the
block in the device. The BH_Lock element denotes that the buffer
is protected against concurrent access, because it takes a part in
an ongoing i/o operation. The BH_Req element means that the
buffer is used in an ongoing i/o request. The BH_Update_Lock
element marks the first buffer from the group of buffers located on
the same page that are protected against concurrent access, because
they take a part in the ongoing i/o operation. The BH_Mapped
indicates that the buffer is associated with a block in the device —
the Linux kernel makes an overprovision of buffers, so not of them
are immediately associated with buffers. The BH_New element means
that the buffer has been associated with a block, but it hasn’t been
used yet. The BH_Async_Read element denotes that buffer is used
in an asynchronous read operation. 5 / 26



Buffers

Buffers
Elements of bh_state_bits

The BH_Async_Write element means that the buffer takes part in an
asynchronous write operation. The BH_Delay element indicates that
the buffer has not been associated yet with a block in the device.
The BH_Boundary element denotes a buffer belonging to a block that
is the boundary of a group of blocks that form a continuous area
on the medium, like for example a disk track. The BH_Write_EIO
indicates that there was an error while the content of the buffer was
stored on the medium. The BH_Unwritten element means that the
buffer is associated with a block, but its data haven’t been stored in
that block yet. The BH_Quiet denotes that the i/o errors associated
with the buffer won’t be reported. The BH_Meta element means
that the buffer contains metadata. The BH_Prio element indicates
that the buffer takes a part in a high-priority i/o operation. The
BH_Defer_Completion element means that the buffer is involved in
an i/o operation which completion is deferred with the use of a work
queue — it is an asynchronous operation. 6 / 26



Buffers

Buffers
The bh_state_bits enumeration has one more element which in-
forms that the rest of the most significant bits in the b_state field
can be used by the device driver for its own use. The element is
called BH_PrivateStart. One of the other fields of the header is
the b_count field that is a reference counter. Its value is incre-
mented by the bh_get() function and decremented with the use of
the bh_put() function. Both of them are inline functions. The ref-
erence counter should be incremented before any operation on the
buffer is performed. This prevents a premature deallocation of the
buffer. The b_dev file contains an address of a structure that de-
scribes the block device storing the block associated with the buffer.
The b_blocknr stores the number of the block. The page that con-
tains the buffer is specified by the b_page field. The address within
that page, from which the buffer area starts is stored in the b_data
field and the size of the buffer is kept in the b_size field. There
are other members of the header, but they are less interesting and
won’t be described here. 7 / 26



The Block Input-Output Structure

The Block Input-Output Structure
The buffer headers use to take part in i/o operations in the ker-
nel versions that predate the release of the 2.6 series. This cased
serious efficiency issues, because a single read or write operations
required using a lot of such headers scattered across the whole ram.
Moreover, the size of the header was almost the same as the size
of the buffer. The kernel developers decided to remove some of the
header fields and create another structure, called bio, which repre-
sents an ongoing i/o operation with the use of a list of segments.
The word “segment” in this context means a continuous part of a
buffer. Buffers which segments are the elements of the bio structure
list don’t have to form a continuous area in the ram. Moreover,
the buffer can simultaneously take a part in several i/o operations
thanks to the bio structures. The most important members of the
bio structure are: bi_io_vec, bi_vcnt and bi_iter. The last one
is a structure itself, that contains the bi_idx field. The first of
them stores an address of a bio_vec structures array, which is the
implementation of the segments list. 8 / 26



The Block Input-Output Structure

The Block Input-Output Structure
Each element of the array is a structure with three fields: bv_page,
bv_offset and bv_len. The first specifies the page where the seg-
ment is located, the second the offset in the page from where the
segment starts, and the third the size of the sector. The bi_io_vec
array describes the whole memory space consisting of the segments
of buffers and assigned to an i/o operation. The bi_vcnt fields
specified how many elements of that array actually takes a part in
that i/o operation. The currently processed element of the array is
specified by the bi_iter field, which value is constantly updated.
Using this filed allows the kernel to clone the bio structure, which
is beneficial for device drivers of such devices as raids, because the
kernel can set a different value of the bi_idx field for each of the
bio structure copy. This makes it possible to perform the i/o oper-
ation described by this structure in parallel. The bio structure has
its own reference counter which is incremented with the use of the
bio_get() function and decremented with the help of bio_put()
function. 9 / 26



The Block Input-Output Structure

The Block Input-Output Structure

The bi_private field of the bio structure can store the structure
creator data. Using the bio structure in the kernel has the following
benefits:

because the bio structure uses the struct page structures,
block i/o operations can use the high memory,
the bio structure can represent the regular i/o operations as
well as direct i/o operations that do not use buffers,
it is easier to perform an i/o operation which data come from
many pages scattered across the ram (so-called scatter-gather
or vectored block i/o operations,
handling the bio structure is easier than handling the buffer
header.

10 / 26



i/o Schedulers

i/o Schedulers

Most of the device drivers maintain a queue of i/o requests for the
device they are handling. Those queues are called request queues
and are represented by the request_queue structure which stores
control data needed for managing the queue and a pointer to a dou-
bly linked list of requests. Each request is the queue is represented
by the struct request structure. If the queue is not empty than
the driver takes the first request from the queue and performs it.
Each request can contain many bio structures that represents a spe-
cific i/o operation with the use of the segments.
For scheduling the requests in the queue is responsible the i/o sched-
uler which job is to minimize the movements of the head in such
block devices as a hard disk. It allows a better average bandwidth
utilization to be achieved and prevents request starvation to appear.
Basically the i/o scheduler performs two operations on requests:
merging and sorting1.

1Not to be confused with the merge sort algorithm.
11 / 26



i/o Schedulers

i/o Schedulers

When a new request is created the i/o scheduler tries to merge it
with requests that are already in the queue and concern adjacent
blocks. If the scheduler fails to do that then it tries to add the
new request among other requests in the queue that are associated
with closely located blocks. Those operations reduce the need for
frequent changing the direction of the disk (or other block device)
head movement. This behaviour of the i/o scheduler is defined
by the look algorithm described in many operating system text-
books. The Linux kernel offers the users a choice of at least three
i/o scheduling algorithms2. Before the 2.6 kernel series was released
there was only one i/o scheduler algorithm called the Linus Eleva-
tor3. This algorithm uses a front and back merging which means
that the new request can be merged at the beginning or at the end
of cluster of requests that concern the adjacent blocks in the device.

2The number sometimes changes with the release of a new kernel version.
3i/o scheduling algorithms are often called elevators.

12 / 26



i/o Schedulers

i/o Schedulers
The Linus Elevator

The back merging happens more often than the back merging. If the
new request cannot be merged with others then the i/o scheduler
switches to sorting i.e. it tries to add the request among other
request that that concern closely located sectors. If it fails to do that
then it adds the new request at the end of the request queue. The
scheduler dost it also when it finds a request which is about to expire.
It should prevent starvation of the request, but unfortunately it may
cause starvation of other requests.

13 / 26



i/o Schedulers

i/o Schedulers
Deadline i/o Scheduler

In the 2.6 series of Linux kernels the Linus Elevator i/o scheduler
has been replaced with three other algorithms. The first of them is
the Deadline i/o Scheduler which prevents request starvation and
gives priority of the read requests over the write requests. The read
delays have more impact on user-space application performance than
write delays. The Deadline i/o Scheduler maintains three queues:
the sorted queue, the read fifo queue and the write fifo queue.
When a new request is created it is added to the sorted queue where
the sorting and merging happens, just like in the Linus Elevator.
Simultaneously it is also added to the write fifo or the read fifo
depending on what type of request it is. The Deadline i/o Scheduler
assigns a 500 milliseconds deadline to each read request and 5 second
deadline to the write request. Normally the request from the front
of the sorted queue is removed and added to the dispatch queue —
the queue managed by the device driver.

14 / 26



i/o Schedulers

i/o Schedulers
Anticipatory i/o Scheduler

However, when one of the request from the fifo queues is close to
expiring then this request is added to the dispatch queue. Another
scheduler in the 2.6 series was the Anticipatory i/o Scheduler. It
operates similarly to the Deadline i/o scheduler but it tries to avoid
interrupting a stream of write requests by a single read requests. If
it detects such a request it stops handling other request for 6 ms —
this time can be configured. If during the time another read request
occurs than the Anticipatory i/o Scheduler handles it immediately.
This behaviour is beneficial if such cases happen a lot. Otherwise
the waiting time could be wasted. To prevent such an issue the
Anticipatory i/o Scheduler gathers statistics of the user-space pro-
cesses i/o operations and uses heuristic functions to predict if the
new read operation will be followed by the next one. The Antici-
patory i/o Scheduler was the default i/o scheduler in the 2.6 series
until the release of the 2.6.18 kernel version. In the last version of
the series 2.6.23 it was entirely removed from the kernel. 15 / 26



i/o Schedulers

i/o Schedulers
The cfq i/o Scheduler

The Completely Fair Queuing i/o Scheduler has been introduced to
the kernel in the 2.6.6 version and it became the default scheduler
in the 2.6.18 version (several distribution used it earlier as a default
i/o scheduler). Its behaviour can be shortly described as a mixture
of the multiple queue schema, the round-robin algorithm and the an-
ticipatory i/o scheduling. The cfq i/o Scheduler introduces a new
property of the user-space processes, the i/o priority. This sched-
uler also allocates for each of those processes a queue, implemented
as a red-black tree, for synchronous i/o operations4. It also main-
tains several queues for the asynchronous i/o operations, which are
shared by all user-space processes. The cfq i/o Scheduler services
the queues in a round-robin fashion starting from the queue of the
process with the highest i/o priority. From each of the queues it
takes as many i/o requests as the time slice assigned to the queue
allows it.

4Synchronous i/o operations require the process to wait for their completion.
16 / 26



i/o Schedulers

i/o Schedulers
The Noop Scheduler

The time slice is also specified by the i/o priority. However, if
there the cfq i/o Scheduler empties the queue before the time slice
expires, the scheduler can use the remaining time to wait for new
i/o requests to occur in the queue. If that happens the requests are
served immediately. After the cfq i/o Scheduler services all the
queues associated with processes it starts handling the queues for
the asynchronous i/o operations, although in their cases it doesn’t
apply the anticipatory scheduling. Because the Anticipatory i/o
Scheduler in some respect doubles the behaviour of the cfq i/o
Scheduler, but its efficiency is worse, it has been removed from the
kernel and replaced by the latter scheduler.
The last i/o scheduler is the Noop i/o Scheduler5. This scheduler
performs only the sorting operation on request queue and it is used
with devices that offer a truly random (direct) access to data, like
the flash memory storage devices.

5The name is derived from the “no-operations” word. 17 / 26



i/o Schedulers

i/o Schedulers

Currently the cfq i/o Scheduler is the default i/o Scheduler in
the most of the Linux distribution. It can be changed before the
kernel is compiled or even during its runtime. The second option
requires only modifying one of the files in the /sys directory, for
example the /sys/block/sda/queue/scheduler file. The following
command displays the content of the content of this file:

cat /sys/block/sda/queue/scheduler
If the result is like this:

noop deadline [cfq]
then it means that the cfq i/o Scheduler is the default i/o sched-
uler. To change it to the Deadline i/o Scheduler the root user can
use the following command:

echo deadline /sys/block/sda/queue/scheduler

18 / 26



The New Block i/o Layer

The New Block i/o Layer
A major rework of the Block i/o Layer took place in the 3.13 release
of the Linux kernel. At that time the Solid State Devices (sdds) be-
come more common. Those devices offer a far more performance
than the hard disks for which the original Block i/o Layer was de-
signed (millions of operations per second vs. hundreds of operations
per second.). The Block i/o Layer become a bottleneck for the
sdds, especially in the multiprocessor computers. The Linux kernel
programmers decided to add third mode of operation for this layer.
The first mode is for block devices that requires no request queue,
the second is for devices that requires a single request queue, and the
third is for the sdds. This mode of operation of the Block i/o Layer
is so different than the previous two, that the kernel programmers
started to call it the New Block i/o Layer. In this mode each cpu
(or a node in the numa architecture based computer system) has its
own software request queue which isn’t protected with a spin lock.
The only operation that originally was performed on this queue was
merging of adjacent i/o requests. 19 / 26



The New Block i/o Layer

The New Block i/o Layer

Each sdd is equipped with at least one, but usually several hardware
request queues. The number of those queues is determined by the
device driver when it is initialized and it depends on the device
capability of parallel handling the i/o requests. The request form
the software queues are moved to the hardware queues and then are
serviced by the sdd. When the sdds eliminate the hard disk from
the common applications then the new mode of the Block i/o Layer,
called a multiqueue mode, will replace the single queue mode.

20 / 26



The New Block i/o Layer

The New Block i/o Layer
The Kyber i/o Scheduler

Initially the kernel programmers thought that no scheduling is re-
quired for the software request queues, but it proved to be helpful
in improving the efficiency of the slower sdds and servicing the pri-
orities of i/o requests coming from various user-space processes. In
the 4.11 kernel version the Deadline i/o Scheduler has been modi-
fied to service those queues. In the 4.12 version two i/o schedulers
designed for this purpose have been added. The first of them —
the Kyber i/o Scheduler — is much simpler than the other. Its
goal is to reduce the latency of i/o operations. To this end it splits
each software request queue into two, one for the synchronous i/o
operations and the other for the asynchronous i/o operations. The
deadline for the first type of i/o operations is 2 ms and 10 ms for
the second type. The Kyber i/o Scheduler moves the i/o requests
from the software request queues to the hardware request queues in
such a way that the latter a as sort as possible. This assures a short
time of 21 / 26



The New Block i/o Layer

The New Block i/o Layer
The Kyber Scheduler

The maximal number of i/o requests in a hardware request queue
is determined by the time of handling previous i/o requests.

22 / 26



The New Block i/o Layer

The New Block i/o Layer
The bfq i/o Scheduler

The Budget Fair Queuing bfq i/o Scheduler was planned for the
single queue mode of operation, but eventually has been redesigned
for the multiqueue mode. It is modelled after the cfq i/o Sched-
uler, but it also has some features of the cfs process scheduler. The
bfq i/o Scheduler assigns to each of processes a number of sec-
tors (the budget) that it is allow to transmit when it is scheduled
for performing the i/o operations. The input data for calculating
the budget are the i/o weight of the process and its behaviour in
the previous rounds of i/o scheduling. The calculations are quite
complex, but the resulting budget must not exceed the global limit.
The process budget is its share in the block i/o device bandwidth,
which is determined with the use of heuristics. The i/o request of
processes with a lower budget are handled before the i/o request of
processes with a larger budget. Each process also has a time slice
when it has to use its budget.

23 / 26



The New Block i/o Layer

The New Block i/o Layer
The bfq i/o Scheduler

If a process manages to use all its budget before the time slice
expires and its last i/o operation is a synchronous one, then the
bfq i/o Scheduler waits for a new request from this process, just
like the Anticipatory and cfq i/o Schedulers do. Several com-
plicated heuristics are applied to improve the performance of the
bfq i/o Scheduler. Their detailed description as well as the de-
scription of the bfq i/o Scheduler itself can be found in an article
entitled “The BFQ I/O scheduler” by Jonathan Corbet, available
here: https://lwn.net/Articles/601799/.

24 / 26

https://lwn.net/Articles/601799/


The End

Questions

?

25 / 26



The End

The End

Thank You for Your attention!

26 / 26


	Introduction
	Buffers
	The Block Input-Output Structure
	i/o Schedulers
	The New Block i/o Layer

