
.

......

Operating Systems 2
Character and Block Devices

Arkadiusz Chrobot

Department of Computer Science

May 18, 2020

1 / 24

Outline

...1 Introduction

...2 Character Device Drivers

...3 Block Device Drivers

2 / 24

Introduction

Introduction

One of the tasks that the vfs does is i/o devices handling. The
word “device” doesn’t have to mean a real hardware, it can be also
a virtual device or a pseudo-device. Unix-like operating systems
recognize three categories of devices — character, block and network
devices — which are accessible to the user-space software. Some of
them, like Linux, also use some subcategories, yet they are internal
to the kernel. This lecture is about how the Linux kernel handles
devices belonging the first two categories. More advanced topics
concerning this subject, like the kernel device tree or the kernel
device model are not discussed here.

3 / 24

Introduction

Introduction
Hardware Infrastructure

All computer systems have some hardware infrastructure that al-
lows them to communicate with external devices. One of the most
popular, although far from perfect is the is the connection structure
of the 32-bit computers based on x86 cpu family. Each device is
attached to the computer with a help of an i/o bus, that consists of
three parts: the data bus, the control bus and the address bus. The
cpus from the Pentium family use 16 or 32 address bus lines or 8,
16, 32 or 64 lines of the data bus. The bus is not directly connected
to the device, but there is a hardware structure that mediates be-
tween them. This structure has up to three components: i/o ports,
the interface and/or controllers. The ports are a set of addresses
that are assigned to the devices. The x86 cpus can address up to
65536 8-bit ports, but the ports can also be merged together into
16 or 32-bit units. The cpus have special instructions to handle the
ports, but they also allow to map those ports into the memory.

4 / 24

Introduction

Introduction
Hardware Infrastructure

The Mapping is preferred, because it allows for dma transfers, is
more efficient and doesn’t require special instructions to handle the
ports. Some cpus, for example those manufactured by the Motorola
Company, use only this solution. The i/o ports are organized into
sets of registers that enable the communication with devices. Typi-
cally there are four types of registers: the status register, the control
register, the input register and the output register. In some cases a
single register has two purposes. For example in the keyboard the
status register is also the control register and the input register is
the output register. The iø interface is a hardware that converts
the value in control register into the device instruction and detects
the device state changes and modify accordingly the status register.
Additionally it is attached to the pic and triggers the interrupt on
behalf of the device. There are two types of interfaces: general-
purpose and specialized.

5 / 24

Introduction

Introduction
Hardware Infrastructure

The former can service several kinds of devices attached to the sys-
tem with the use of such buses like parallel, serial usb, pcmcia, scsi,
etc. The latter are associated with a specific type of device, like the
keyboard or mouse. More advanced devices require a controller that
translates the high-level instruction send by the i/o interface into
a series of microinstructions that can be interpreted by the device.
It also changes the state of registers according to the signals that it
receives from the i/o device.

6 / 24

Introduction

Introduction
i/o Device Handling in Linux — General Description

In Unix-like operating system the character and block devices are
handled the same way as files, i.e. with the use of the same sys-
tem calls. They are also represented by files, which aside from the
name have three additional attributes: type that specifies if the rep-
resented device is a character device or a block device, the major
number and the minor number. Inside the kernel those numbers are
combined into one 32-bit device number of the dev_t type. Start-
ing from the series 2.6 of the kernel the major number occupies the
most significant 20 bits of the device number, and the minor num-
ber occupies the least significant 12 bits. However, those numbers
inside the device number should be always accessed with the use of
the major and minor macros. They also ought to be merged into
the device number with the use of the mkdev macro. The reason for
that is that in the earlier versions of the kernel the size of the major
and the minor number was 16-bits. It has changed in the 2.6 series
and so it may change in the future kernel releases. 7 / 24

Introduction

Introduction
i/o Device Handling in Linux — General Description

The major number identifies the driver that is responsible in the
kernel for handling a family of devices (like the printers for exam-
ple). The minor number identifies the specific device handled by
the driver. It is useful when more than one device of a given family
is attached to the computer. The drivers can be implemented as an
immanent part of the kernel or in a form of kernel module.

8 / 24

Character Device Drivers

Character Device Drivers
The character devices usually provide a sequential access to the
data and transfer a relatively small portions of information, like
several bytes. Moreover the size can be different in each transfer.
An example of the character device can be a keyboard or a mouse.
The first thing that the character device driver does is acquiring one
or several of major numbers with the help of the following function:
int register_chrdev_region(dev_t first, unsigned int

count, char *name);
The first parameter specifies the first device number from a pool
of such numbers that should be acquired. Should the driver be avail-
able to all Linux users then the numbers it uses have to be assigned
by The Linux Assigned Name and Numbers Authority (www.lanana.
org). Otherwise the availability of those numbers can be verified in
the /proc/devices file or in the /sys directory. The count parame-
ter specifies the number of device numbers that have to be allocated
and the name parameter the string of characters that represents the
name of the device. 9 / 24

www.lanana.org
www.lanana.org

Character Device Drivers

Character Device Drivers

The function returns 0 if it manages to successfully acquire the de-
vice numbers. More convenient to use is the following function:

int alloc_chrdev_region(dev_t *dev, unsigned int
firstminor, unsigned int count, char *name);

It allocated to the driver a specified number of device numbers start-
ing with the first available device number. The programmer doesn’t
specify the first device number. The dev parameter is an output
parameter. The function uses it to return the first allocated de-
vice number. The firstminor specifies the value of the first minor
number that should be allocated. Usually it is 0. The last two
parameters are the same as in the register_chardev_region()
function. If successful the function returns 0. If the device numbers
are no longer used they should be unregistered with the use of the
following function:
void unregister_chrdev_region(dev_t first, unsigned int

count);
10 / 24

Character Device Drivers

Character Device Drivers
The character device drivers use three of the vfs structures: the file
object, the file method table and the i-node object. The file method
table should contain addresses of the functions that perform oper-
ations on the device file. If the driver is implemented as a method
table then the value of the this_module macro should be assigned
to its owner field. It prevents unloading the module when one of
the methods is performed. Usually the programmers who write the
device drivers implement four methods: open(), read(), write()
and close(), although implementing all of them in one driver is
not necessary. If the device requires some specific operations that
cannot be provided by those four functions then one of the ioctl()
methods has to be implemented. The other methods can be left
unimplemented. The driver may make use of the following mem-
bers of the file object: mode — stores the access permissions, f_pos
— it is the file pointer, f_flags — stores flags, f_ops — points
to the method table, private_data and f_dentry — points to the
dentry object. 11 / 24

Character Device Drivers

Character Device Drivers

The mode field may be verified by the open() method, but it is not
necessary, because it is checked by other parts of the kernel, before
this method is called. The driver checks the flags field to decide
if the operations have to be synchronous or asynchronous. The
64-bit value of the f_pos field is passed to the llseek() method,
which returns modified value of the file pointer. Also the read()
and write() methods use this pointer, which is passed to them
by their last parameter. The private_data field is a pointer of the
void * type, that can point to a dynamically allocated memory area
used for storing data that shouldn’t be lost between methods calls.
The memory area should be allocated by the first invocation of the
open() method, and deallocated by the invocation of the release()
method that follows the last invocation of the user-space close()
function. The f_dentry field is used for acquiring the address of
the i-node object.

12 / 24

Character Device Drivers

Character Device Drivers
In the i-node object the driver can use the i_rdev field that stores
the device number. To obtain the major and minor number from
that field the following macros can be used:

unsigned int iminor(struct inode *inode);
unsigned int imajor(struct inode *inode);

Other field of this object is the i_cdev pointer which points to a
structure that represents the character device served by the driver in
the kernel. The structure has to be created and initialized with the
use of the cdev_alloc() function or it can be statically allocated
and initialize with the help of the following function:
void cdev_init(struct cdev *cdev, struct file_operations

*fops);
In both cases the address of the structure has to be stored in the
i_cdev field and the value of the this_module macro has to be
assigned to its owner field. Also when the structure is created with
the use of the cdev_alloc() function, the ops field of the cdev
structure has to be initialized directly. 13 / 24

Character Device Drivers

Character Device Drivers
After the cdev structure is created it has to be added to other
such structures stored by the kernel with the help of the following
function:
int cdev_add(struct cdev *dev, dev_t num, unsigned int

count);
This function removes the cdev structure from other such structures
stored by the kernel:

void cdev_del(struct cdev *dev);
Each device handled by the driver has to have its own cdev struc-
ture. In the earlier releases of the kernel the driver didn’t have
to create such a structure. The device was registered with the
help of the register_chrdev() function and unregistered by the
unregister_chrdev() function. Starting for some releases of the
2.6 kernel series the device model subsystem has to be informed
about a new driver. It happens when the driver is initialized and
requires using a macro and a function. The macro creates a struc-
ture that describes the class of the device handled by the driver.

14 / 24

Character Device Drivers

Character Device Drivers

The declaration of the macro is as follows:
class_create(owner, name);

Its first argument is the value of the this_module macro, and the
second is the name of the class. The function is declared as follows:
struct device *device_create(struct class *class, struct
device *parent, dev_t devt, void *drvdata, const char

fmt, …);
It creates and registers int the sysfs file system a structure that
represents the device. Its fist argument is the address of the class
structure. The second argument is the address of a parent data
structure — it can be null if no such structure exists. The third
argument is the device number. The fifth argument is a pointer to
a data stored in the structure and used by callback functions — it
also can be null. The fifth argument is a string that represents the
name of the device. It can contain formatting strings, just like the
printf() function.

15 / 24

Character Device Drivers

Character Device Drivers
The structure created by the device_create() function can be re-
moved with the use of the following function:

void device_destroy(struct class *cls, dev_t devt);
It has two arguments: the address of the class structure and the
device number. The class structure can be then freed using the
following function:

void class_destroy(struct class *cls);
As an argument it takes the address of the released class structure.
The behaviour of the device driver methods must follow a specific
protocol. The open() method should:

identify the device the driver handles — get the minor number,
check if there are no errors specific for that device,
initialize the device, if it is opened for the first time,
update file pointer, if necessary,
allocate and initialize the memory area for private data, if nec-
essary.

16 / 24

Character Device Drivers

Character Device Drivers

Likewise the release() method should follow this protocol:
deallocate the memory area for the private data, if it has been
allocated by the open() method,
shut down the device after the last invocation of the user-space
close() function.

The implementations of read() and write() methods should also
respect some rules. They should return the number of actually
read/written bytes. In case of failure they should return an error
code that identifies the cause, like -eintr — a signal has been re-
ceived, -efault — a bad address, -eio general input-output error.
For more detailed description of the character device driver api
please refer the eight laboratory instruction.

17 / 24

Block Device Drivers

Block Device Drivers

The block device drivers use similar structures and operations as
character device drivers. However, the handling of block devices is
a more challenging task, and some of its details will be discussed in
the next lecture. The block devices provide random access to data
and they transfer them in portions called blocks, hence the name of
those devices. The size of a single block is a even multiple of the
sector size. The kernel assumes that the size of the sector is 512
bytes.
The first thing that the block device driver does when initialized is
acquiring a major number with the help of the register_blkdev()
function, which is declared in the linux/fs.h header file in the
following way:

int register_blkdev(unsigned int major, const char
*name);

If the first argument of this function is 0 then it will allocate the
first available major number.

18 / 24

Block Device Drivers

Block Device Drivers

The allocated major number can be released using the following
function:
void unregister_blkdev(unsigned int major, const char

*name);
The block device drivers have their own method table which is a
structure of the struct block_device_operations type declared
in the linux/blkdev.h header file. It has the owner field and sev-
eral other members that should point to such methods as: open(),
release(), ioctl(), compat_ioctl(), check_events() and finally
revalidate_disk(). The check_events() method is invoked mainly
when the medium in the device is changed and it invocation is fol-
lowed by the call to the revalidate_disk() method.
Just like a character device is represented by the cdev structure the
block device is represented by a structure of the struct gendisk
type, which is declared in the linux/genhd.h header file.

19 / 24

Block Device Drivers

Block Device Drivers
This structure has the following members: major — stores the ma-
jor number, first_minor — stores the first minor number, minors
— stores the number of minor numbers, disk_name — stores a
string that represents the name of the device (up to 32 characters),
fops — stores the address of the block_device_operations struc-
ture, queue — stores the address of the request queue, flags —
stores flags (rarely used, usually only for pluggable devices and op-
tical disks) and private_data — points to the memory area that
stores driver’s private data. The gendisk structure also stores the
capacity of the block device, expressed in sectors. This value is set
with the help of the set_capacity() function. The gendisk struc-
ture is allocated with the use of the alloc_disk() function and
released after its reference counter reaches zero with the help of the
put_disk() function:

struct gendisk *alloc_disk(int minors);
void put_disk(struct gendisk *disk);

20 / 24

Block Device Drivers

Block Device Drivers

Each gendisk structure represents a single device handled by the
driver, for example a single partition of the hard disk. To make the
device available to the rest of the kernel, the driver should call the
add_disk() function for its gendisk structure:

void add_disk(struct gendisk *gd);
The structure can be removed with the use of the del_gendisk()
function:

void del_gendisk(struct gendisk *gd);
The most important member of the gendisk structure is the queue
field, which point to the request queue. The memory for the queue
is allocated with the use of the blk_init_queue():

request_queue_t *blk_init_queue(request_fn_proc
*request, spinlock_t *lock);

The first argument of this function should be an address of a function
that processes the requests from the queue and the second ought to
be the address of a spin lock that protects the queue.

21 / 24

Block Device Drivers

Block Device Drivers
If the driver services a device that unlike hard disks offers a truly
random access to data (for example a flash memory device), then
the request queue is redundant. In this case the queue field of the
gendisk structure is initialized with the use of the blk_alloc_queue()
function:

request_queue_t *blk_alloc_queue(int flags);
If such an initialization is performed then the driver should provide
an implementation of the make_request() function that processes
a single request. The function should be registered with the use of
the following function:

void blk_queue_make_request(request_queue_t *queue,
make_request_fn *func);

The request queue is deallocated with the use of the following func-
tion:

void blk_cleanup_queue(struct request_queue *q);
For more detailed description of the block device driver api please
refer the ninth laboratory instruction. 22 / 24

The End

Questions

?

23 / 24

The End

The End

Thank You for Your attention!

24 / 24

	Introduction
	Character Device Drivers
	Block Device Drivers

