
.

......

Operating Systems 2
Introduction

Arkadiusz Chrobot

Department of Computer Science

February 24, 2020

1 / 22

Outline

...1 Literature

...2 Linux History

...3 Linux Features

...4 The Linux Kernel Overview

...5 Linux Kernel vs. Other Unices Kernels

...6 Linux Kernel Versioning

...7 Kernel-Space Programming Introduction

2 / 22

Literature

Literature
Primary Literature

...1 Robert Love, Linux Kernel Development, Third Edition, Addison-
Wesley, Upper Saddle River, NJ, 2010

...2 Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman,
Linux Device Drivers, O’Reilly, 2005

...3 Wolfgang Mauerer, Professional Linux Kernel Architecture, Wi-
ley Publishing, Inc., Indianapolis, 2008

...4 Sreekrishnan Venkateswaran, Essential Linux Device Drivers,
Prentice Hall, Upper Saddle River, 2008

...5 Daniel P. Bovet, Marco Cesati, Understanding the Linux Ker-
nel, 3rd Edition, O’Reilly Media, Sebastopol 2005

3 / 22

https://lwn.net/Kernel/LDD3/
https://lwn.net/Kernel/LDD3/

Literature

Literature
Additional Literature

...1 Mel Gorman, Understanding the Linux Virtual Memory Man-
ager, Pearson Education, Inc., Upper Saddle River, 2004

...2 Maurice J.Bach, The Design of the Unix Operating System,
Prentice Hall 1986

4 / 22

https://www.phptr.com/content/images/0131453483/downloads/gorman_book.pdf
https://www.phptr.com/content/images/0131453483/downloads/gorman_book.pdf

Literature

Literature
Webpages

...1 Linux Weekly News

...2 Linux Kernel Newbies

...3 Linux Cross Reference

...4 Embedded Linux and Kernel Engineering

...5 Build own USB device on linux-based board! [en] - Krzysztof
Opasiak

...6 Linux Kernel Documentation

5 / 22

https://lwn.net/
https://kernelnewbies.org/
https://elixir.bootlin.com/linux/latest/source
https://bootlin.com/doc/training/linux-kernel/
https://www.youtube.com/watch?v=lbmAn3b76rY
https://www.youtube.com/watch?v=lbmAn3b76rY
https://www.kernel.org/doc/

Linux History

Linux History

The development of the Linux operating system (more specifically,
the kernel) started in 1991 by a Finnish Computer Science student
Linus Benedict Torvalds. But the story began a long time before
that …

6 / 22

Linux History

Linux History

In 60. of the last century the MIT, General Electric and AT&T
started working on an innovative, time-sharing computer sys-
tem. The operating system for this computer, called multics,
was prepared by the MIT and AT&T.
The project run into problems and the AT&T backed out. Ken
Thompson who worked in the Bell Labs (part of the AT&T
company) and was one of the programmers that wrote multics
started to write a game Space Travel on a PDP-7 computer.
Then, in 1969, he began developing the Unix operating system
(originally unics).
Soon other programmers from AT&T joined (Dennis Ritchie,
Malcolm Douglas McIlroy, Brian Kernighan, Rob Pike, and
others).
Douglas McIlroy contributed the Unix pipelines.
In 1973 the biggest part of the Unix source code was rewritten
in the C language created by Denis Ritchie.

7 / 22

Linux History

Linux History

The AT&T was a monopoly in a telecommunication industry.
They could not sell software, so they sold computers with pre-
installed Unix, together with its source code.
The system became very popular in academia an industry. The
source code of Unix was used in operating systems courses in
universities. Australian Computer Science researcher John Li-
ons wrote a textbook (so-called Lions Book) for those classes
that contained parts of the code.
Researches at University of California in Berkeley issued their
own version of Unix, that had sockets for network communica-
tion. One of them, Bill Joy, added virtual memory subsystem
and several tools like vi and C-shell (csh).
Many other universities and companies started the issue their
own versions of Unix.
To manage the verity of Unix implementations ieee, iso and
The Open Group issued two standards posix and sus.

8 / 22

Linux History

Linux History
Short Brake

The Unix was successful because of the Unix philosophy — the way
it was designed. The main features of this design approach are as
follow:

two main concepts — the process and the file,
the kiss rule — “Keep It Simple Stupid”,
small number of system calls (about 100),
simple to use and fast system calls (“do one thing and do it
well”),
interprocess communication primitives,
written in portable, high-level programming language.

9 / 22

Linux History

Linux History
Continued

In 80. of the previous century the US Government decided to
divide AT&T into several companies. One of them overtook
the software branch and started to licensing the Unix, also the
already sold versions!
The new license forbade using the Unix source code in operating
systems classes at universities. The Lion Book become illegal!
Andrew S. Tanenbaum, a professor of Computer Science at
Vrije University at Amsterdam, upset by this situation devel-
oped minix an operating system for students that is Unix-like,
i.e. its design follows the posix and sus standards, but is based
on microkernel architecture.
Linus Torvalds, Finnish student of Computer Science, upset
by the shortcomings of minix started to develop an operating
system kernel, and he shared its source code through Usenet.
Soon he was joined by other programmers. The user tools were
provided by the GNU and other organizations. 10 / 22

Linux History

Linux History
Concluded

Nowadays Linux is one of the widely used operating system (if not
the most). The kernel has alone 27.8 million lines of code (as of
January 2020). Even Ken Thompson uses Linux.

11 / 22

Linux Features

Linux Features

It’s a free (GNU GPL v. 2.0) operating system kernel.
It’s a Unix-like system.
It’s written mostly in the C language, but some parts are writ-
ten in assembly language, which uses the AT&T notation.
It is or was available for hardware based on ARM, AMD, Intel,
POWER, PowerPC, MIPS, Sparc, UltraSparc and many other
processors.
It supports parallel architectures such as SMP and NUMA.
It is provided together with user programs, such as shells, X-
Window, and so on. Such a package is called a Linux distribu-
tion.

12 / 22

The Linux Kernel Overview

The Linux Kernel Overview
The kernel is a part of operating system that is always present in
the ram when the computer is on. It supervises devices and user
processes. All kernel activities are performed in a system mode.
The kernel also has its own set of addresses that it uses to access
the memory. Those addresses, the memory they reference and the
state of the kernel are called a kernel-space. By contrast the state
of user processes together with the content of their memory and
the addresses that those processes use to access memory is called
a user space. The kernel actively performs operations only when it
is initialized, i.e. when a system boots up. After that it becomes
an event-driven software. Those events may be initiated by user
processes, by performing a system call. The system call is a special
kernel function that can be invoked by a user process. Usually it is
not called directly, but with the use of some of the functions from the
standard C language library. Some of those function don’t invoke
any system calls, but most of the at least uses one of them.

13 / 22

The Linux Kernel Overview

The Linux Kernel Overview

The system call is performed in the kernel-space and it has the ac-
cess to all data about the user process that invoked it, thus it is
performed in the process context. The event that the kernel reacts
to can be initiated by a hardware. Such events are called inter-
rupts and their are asynchronous to the kernel activities. It means
they can interrupt some important operations, thus they have to be
served quickly. Because of that, the kernel code (the so-called inter-
rupt handler) that handles the interrupt runs in a special interrupt
context, which is not associated with any user process. The Figure
1 summarises the concepts of the user-space, the kernel-space, the
process context and the interrupt context.

14 / 22

The Linux Kernel Overview

The Linux Kernel Overview

..

user-space

.

kernel-space

.

process context

.

interrupt context

Figure 1 : The main concepts of kernel 15 / 22

Linux Kernel vs. Other Unices Kernels

Linux Kernel vs. Other Unices Kernels

Linux just, like Unix is a monolithic kernel.
It supports dynamically loaded kernel modules.
It supports multiprocessor parallel architectures like SMP and
NUMA.
It supports kernel threads preempting starting with the version
2.6.
It doesn’t swap kernel pages, only the user processes pages.
It doesn’t support streams, which are in Linux implemented
totally in the user-space.

16 / 22

Linux Kernel Versioning

Linux Kernel Versioning

At the beginning the subsequent versions of the Linux kernel were
designated with three numbers separated by a dot, like this: 2.2.1.
The first number is the so-called major version, and the second is
the minor version. For the development releases the minor number
was odd, and for the stable releases it was even. The former were
usually undergoing significant changes in code and they were not
recommended for production environments. The latter contained
fixes of discovered bugs and they code was not changing significantly.
The last number, called revision number just indicates the order of
releases. The version numbering changed with the release of the
2.6 kernel. The kernel programmers decided that it was so good
designed, that no development version was needed. All significant
changes were performed on the stable version. This lead to the
necessity of using a forth number that indicated that the version
contains fixes of significant bugs.

17 / 22

Linux Kernel Versioning

Linux Kernel Versioning

With the release of the 3.0 version the numbering changed once
again. The minor number is just used for indicating subsequent
kernel releases. The released candidate versions are designated with
the -rc suffix. There are also some long term support version. The
lecture and laboratory classes are mostly about the 4.4 long time
support version. The newest stable kernel version is 5.5.5.

18 / 22

Kernel-Space Programming Introduction

Kernel-Space Programming Introduction

The majority of the kernel code is written in the C language,
only small hardware-depended parts are written in the assembly
language.
The kernel programmers often use the infamous goto state-
ment, usually for optimization and exception handling.
The standard C language library in unavailable in the kernel-
space. Instead the kernel has its own header files and substi-
tutes of the major C functions. For example instead of the
printf() function the printk() function is used. The string
processing functions from the user-space have their counter-
parts in the kernel-space.
The kernel code has to be portable, which means that the kernel
programmers have to, for example, take into consideration the
order of the bits and bytes (the endianness).
The concurrency and synchronization issues are always present
in the kernel-space.

19 / 22

Kernel-Space Programming Introduction

Kernel-Space Programming Introduction

The kernel assigns to every user-space process a kernel-space
call stack (Do not confuse it with the user-space call stack!),
which is used by system calls and kernel function. Its size is
very limited, only two pages!
The floating-point operations in kernel space are not directly
supported. Fortunately, they are usually not needed.
There is almost no memory protection inside the kernel-space.
The kernel code uses GNU C extensions, like the inline func-
tions, the inline assembly and the likely() and unlikely()
directives for annotating the conditions of conditional state-
ments.

20 / 22

The End

Questions

?

21 / 22

The End

The End

Thank You for Your attention!

22 / 22

	Literature
	Linux History
	Linux Features
	The Linux Kernel Overview
	Linux Kernel vs. Other Unices Kernels
	Linux Kernel Versioning
	Kernel-Space Programming Introduction

