
.

......

Fundamentals of Programming 2
Doubly Linked Linear List

Arkadiusz Chrobot

Department of Computer Science

April 6, 2020

1 / 55

Outline

...1 Introduction

...2 Implementation
Base Type and List Pointer
Creating the List
Adding an Element to the List
Removing an Element From the List
Printing the Content of the List
Removing the List

...3 Summary

2 / 55

Introduction

Introduction

The doubly linked linear list is another example of a linear list. The
singly linked linear list and the doubly linked linear list are quite
similar. From the user point of view the main difference between
those two lists is that the doubly linked list may be easily traversed
forward and backward. In this lecture the implementation of the
doubly linked linear list in a form of a dynamically allocated data
structure is presented.

3 / 55

Implementation

Implementation

Just like the singly linked list, the doubly linked list is presented with
the use of an example program, that uses it to store natural numbers
in the ascending order. In other words, it is a sorted list. Similarly
as in the case of singly linked list, first the base type is defined and
the list pointer is declared. Next, the five basic operation for the list
are implemented: creating the list, adding a single element to the
list, removing a single element from the list, printing the content of
the list on the screen and removing the list.

4 / 55

Implementation Base Type and List Pointer

Base Type and List Pointer

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node
5 {
6 int data;
7 struct list_node *previous, *next;
8 } *list_pointer;

5 / 55

Implementation Base Type and List Pointer

Base Type
The base type of the doubly linked linear list, that is presented in
the previous slide, differs from the base types of previously intro-
duced data structures by having an additional pointer field. The
field, which is called previous in the example base type is used for
storing an address of a list element that precedes a given element.
In the doubly linked linear list there can be only one element that
stores the null value in that field. It is the first element in the list.
There is a kind of the doubly linked linear list that has the same
base data type as the singly linked linear list. It is called an xor
linked list. In the single pointer field is stored not a single address
but a result of the bitwise xor operation performed on addresses
of preceding and succeeding elements of a given element. The xor
list is more memory-effective than classical doubly linked linear list,
but operations on the list are more time-consuming and compli-
cated. The former list won’t be described any more in the lecture.
The presented base type can be modified or expanded provided that
both pointer fields used for building the list are preserved. 6 / 55

Implementation Base Type and List Pointer

List pointer

The list pointer (the list_pointer variable) is declared in the same
slide where the base type is defined. Unlike in the case of the singly
linked linear list it doesn’t have to always point to the first element
of the double linked linear list, indeed it may point to any element in
the list. However, it is convenient if every operation on the list leaves
the pointer pointing to the beginning of the list. This approach is
applied in the demonstrated program.
In the slide that contains the definition of the base type and the dec-
laration of the list pointer also the statements that include header
files with the declarations of functions used in the program are pre-
sented.

7 / 55

Implementation Creating the List

Creating the List

Just like in the case of the singly linked linear list the operation of
creating the list is equivalent to the operation of creating its first
element and storing the address of the element in the list pointer.
The operation is performed by the create_list() function, which
definition is presented in the next slide.

8 / 55

Implementation Creating the List

Crating the List

1 struct list_node *create_list(int number)
2 {
3 struct list_node *first_node = (struct list_node *)
4 malloc(sizeof(struct list_node));
5 if(first_node) {
6 first_node->data = number;
7 first_node->previous = first_node->next = NULL;
8 }
9 return first_node;

10 }

9 / 55

Implementation Creating the List

Creating the List

The create_list() function definition for the doubly linked linear
list is very similar to its counterpart for the singly linked linear list.
Thus only the most important differences are described here. In
the 7th line of the function’s source code the null value is assigned
not only to the next pointer field but also to the previous pointer
field of the first element. The element is the first and in the same
moment the last element of the list. The address returned by the
function has to be stored in the list pointer.

10 / 55

Implementation Adding an Element to the List

Adding an Element to the List

Just like in the case of the singly linked linear list the operation of
adding a single element to the doubly linked linear list has to be
performed on a nonempty list. Let’s assume that the list pointer
should point to the first element of the list, after the operation is
finished. If the operation fails the list should be in the same state
as it was before it begun.

11 / 55

Implementation Adding an Element to the List

Adding an Element to the List

There are three cases that should be considered when implementing
the operation of adding a single element to the doubly linked linear
list:

...1 the element is added at the front on the list and becomes its
first element,

...2 the element is added inside the list,

...3 the element is added at the end of the list and becomes its last
element.

The three cases are handled by separated helper function which are
invoked by a single function responsible for the whole operation.
First, the definitions of the helper functions are described.

12 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding an Element to the List

1 struct list_node *add_at_front(struct list_node *list_pointer,
2 struct list_node *new_node)
3 {
4 new_node->next = list_pointer;
5 list_pointer->previous = new_node;
6 return new_node;
7 }

13 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding an Element to the List

The add_at_front() function, unlike its counterpart for the singly
linked linear list, has to take into consideration the previous pointer
field in the currently first element of the list. Hence, in the 5th line
the address of the new element is assigned to the aforementioned
field of the currently first element of the list. The rest of the function
is the same as in the case of the singly linked linear list.

14 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Finding a spot

Handling of the two remaining cases requires traversing the list in
search of a suitable spot. An address of the element after which
a new one should be added to the list is an expected result of the
operation. To locate such an element the same find_spot() func-
tion can be used as for the singly linked linear list. Its definition is
presented in the next slide. Only one modification has been made
to the function. The name of its second parameter is changed.

15 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Finding a Spot

1 struct list_node *find_spot(struct list_node *list_pointer,
2 int number)
3 {
4 struct list_node *previous = NULL;
5 while(list_pointer&&list_pointer->data<number) {
6 previous = list_pointer;
7 list_pointer = list_pointer->next;
8 }
9 return previous;

10 }

16 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

1 void add_in_middle(struct list_node *node,
2 struct list_node *new_node)
3 {
4 new_node->previous = node;
5 new_node->next = node->next;
6 node->next->previous = new_node;
7 node->next = new_node;
8 }

17 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

Adding a new element inside the doubly linked linear list is a little
more complicated operation than adding a new element to the singly
linked linear list, because of the additional pointer field. In the 4th
line of the function presented in the previous slide, the address of the
element that should precede in the list the new element is assigned to
the previous field of the new element. The address of the element
that should succeed the new element in the list is assigned to the
next field of the new element in the 5th line. In the 6th line the
address of the new element is assigned to the previous pointer field
of succeeding element. The left side of the assignment statement is
quite complex, but it means that the function uses the next field
of the element that is pointed by the node parameter, to get to the
element that should succeed the new one in the list and to modify
its previous pointer field. In the result the new element is partially
added to the list.

18 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

In the 7th line of the add_in_middle() function, the address of the
new element is assigned to the next pointer field of the element that
should precede the new on the list. Please observe, that the lines
no. 6 and 7 cannot switch their places. The next slides illustrate the
behaviour of the add_in_middle() function. The fields that values
are copied from are denoted by the yellow colour and the ones that
the values are copied to are denoted by the violet colour.

19 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

..

node

. next.
previous

.

null

.

null

.

new_node

. next.
previous

Before performing the 4th line

20 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

..

node

. next.
previous

.

null

.

previous

.

new_node

. next.
previous

After performing the 4th line

20 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

..

node

. next.
previous

.

next

.

previous

.

new_node

. next.
previous

After performing the 5th line

20 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

..

node

. next.
previous

.

next

.

previous

.

new_node

. next.
previous

After performing the 6th line

20 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding Inside the List

..

node

. next.
previous

.

next

.

previous

.

new_node

. next.
previous

After performing the 7th line

20 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding at the End of the List

1 void add_at_back(struct list_node *last_node,
2 struct list_node *new_node)
3 {
4 last_node->next = new_node;
5 new_node->previous = last_node;
6 }

21 / 55

Implementation Adding an Element to the List

Adding an Element to the List
Adding at the End of the List

The add_at_back() function takes two pointers as arguments. The
first one points to the currently last element of the list and the
second one points to the new element that should be added at the
end of the list. In the 4th line the address of the new element is
assigned to the next field of the currently last element of the list.
In the result the new element is partially linked to the list. In
the 5th line the address of the element pointed by the last_node
parameter is assigned to the previous field of the new element.
After the assignment is completed, the new element becomes an
integral part of the list, i.e. the last element of the list.

22 / 55

Implementation Adding an Element to the List

The add_node() Function

1 struct list_node *add_node(struct list_node *list_pointer, int number)
2 {
3 if(list_pointer) {
4 struct list_node *new_node = (struct list_node *)
5 malloc(sizeof(struct list_node));
6 if(new_node) {
7 new_node->data = number;
8 new_node->previous = new_node->next = NULL;
9 if(list_pointer->data>=number)

10 return add_at_front(list_pointer,new_node);
11 else {
12 struct list_node *node = find_spot(list_pointer, number);
13 if(node->next)
14 add_in_middle(node, new_node);
15 else
16 add_at_back(node, new_node);
17 }
18 }
19 }
20 return list_pointer;
21 }

23 / 55

Implementation Adding an Element to the List

The add_node() Function
The definition of the add_node() function is little more complicated
then its counterpart for the singly linked linear list. The meaning
of the parameters and returned value is however the same. The
add_node() function for the doubly linked linear list first checks if
the list pointer is valid (3th line), i.e. the list is not empty. If it is
the function performs the statement in the 20th line and exits — the
list stays empty. Otherwise the function tries to allocate memory
for the new element (4th and 5th lines) and checks if the allocation
is successful (6th line). If so, it initializes the fields of the new
element (7th and 8th line) and recognizes which of the three cases
of adding the new element to the list should be handled. Otherwise
the function performs the statement in the 20th line and this time
the list also stays unchanged. In the 9th line the function checks if
it should add the new element at the beginning of the list. If so, it
calls the add_at_front() helper function. When the latter finishes
its job, the add_node() function exits.

24 / 55

Implementation Adding an Element to the List

The add_node() Function

If the new element should be added inside or at the back of the list,
the add_node() function locates the element after which the new one
should be added with the help of the find_spot() function. In the
13th line the former checks if the element found by the find_spot()
function is the last in the list. If so, it calls the add_at_back()
function and then exits. Otherwise it calls the add_in_middle()
function and then also exits.

25 / 55

Implementation Removing an Element From the List

Removing and Element From the List

The operation of removing a single element from the doubly linked
linear list is also performed differently than in the case of the singly
linked linear list. Despite the similarities, the differences are so great
that the implementation of the operation is more complicated. Just
like in the case of the previously discussed list, it is required that
if the operation is performed for a list with a single element then
after it is completed the list should be empty. If the operation is
performed for an empty list then the list should stay empty. If
the operation is performed for a list with more than one element,
then the list should be shorter by one element, provided that the
list contains at least one element that should be removed. Finally,
if the list doesn’t contain any element to remove, it should stay
unchanged.

26 / 55

Implementation Removing an Element From the List

Removing an Element From the List

Just like in the case of the singly linked linear list there are four
cases that should be considered when implementing removing the
element from the list:

...1 removing the first element of the list,

...2 removing an element from the inside of the list,

...3 removing the last element of the list,

...4 the list doesn’t contain an element that should be removed.
The first three cases are handled by helper functions that are invoked
by the delete_node() function. The helper functions are described
in the next slides, before the latter function. The forth case doesn’t
require a separate subroutine to be defined.

27 / 55

Implementation Removing an Element From the List

Removing From the Front of the List

1 struct list_node *delete_at_front(struct list_node *list_pointer)
2 {
3 struct list_node *next = list_pointer->next;
4 if(next)
5 next->previous = NULL;
6 free(list_pointer);
7 return next;
8 }

28 / 55

Implementation Removing an Element From the List

Removing From the Front of the List

The delete_at_front() function unlike its counterpart for the
singly linked linear list has to take into account the previous pointer
field of the second element of the list. The element becomes the first
element of the list as a result of the removal operation. In the 4th
line the function checks if the next (i.e. second) element exists. If
not, then the element to be removed is the first and only element
of the list and the function performs the statement in the 6th line.
Otherwise the null value is assigned to the previous field of the
second element of the list (5th line), because this element will be-
come the first element of the list. Only after the assignments are
completed the memory for the formerly first element of the list is
deallocated (6th line). The function returns the value of the local
pointer named node and exits.

29 / 55

Implementation Removing an Element From the List

Searching for an Element

1 struct list_node *find_node(struct list_node *list_pointer,
2 int number)
3 {
4 while(list_pointer&&list_pointer->data!=number)
5 list_pointer = list_pointer->next;
6 return list_pointer;
7 }

30 / 55

Implementation Removing an Element From the List

Searching for an Element

The find_node() function returns an address of an element of the
list that stores in its data field the number passed to the function
by the number parameter. The list pointer is passed to the func-
tion by its first parameter. In the while loop (4th and 5th lines)
the function checks each element of the list if it contains the same
number as the number parameter. The loop stops when the element
is found or the list contains no more elements for verifying. The
result of the search (the address of the element or the null value)
is stored in the list_pointer parameter. The value of this pointer
is returned by the function.

31 / 55

Implementation Removing an Element From the List

Removing From the Inside of the List

1 void delete_in_middle(struct list_node *node)
2 {
3 node->next->previous = node->previous;
4 node->previous->next = node->next;
5 free(node);
6 }

32 / 55

Implementation Removing an Element From the List

Removing From the Inside of the List

The presented in the previous slide function removes from the inside
of the list the element which address is passed by the function’s
parameter. To this end it unlinks the element from the list in the
3rd and 4th lines and then it deallocates the memory for the element
in the 5th line. In the 3rd line the function uses the node pointer,
that points to the element to be removed, to assign to the previous
field of the succeeding element the address of the preceding element.
In the 4th line a similar work is performed, i.e. the function uses the
same pointer to assign to the next field of the preceding element the
address of the succeeding element. The next slides illustrates the
behaviour of the described function. The meaning of the colours is
the same as in the previous illustrations.

33 / 55

Implementation Removing an Element From the List

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

Before performing the 3rd line

34 / 55

Implementation Removing an Element From the List

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

After performing the 3rd line

34 / 55

Implementation Removing an Element From the List

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

Before performing the 4th line

34 / 55

Implementation Removing an Element From the List

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

After performing the 4th line

34 / 55

Implementation Removing an Element From the List

Removing From the Inside of the List

..

next

.

previous

.

node

.

next

.

previous

.

next

.

previous

After performing the 5th line

34 / 55

Implementation Removing an Element From the List

Removing From the End of the List

1 void delete_at_back(struct list_node *last_node)
2 {
3 last_node->previous->next = NULL;
4 free(last_node);
5 }

35 / 55

Implementation Removing an Element From the List

Removing From the End of the List

The delete_at_back() function is responsible for removing the last
element of the list. The address of the element is passed to the
function by its parameter. In the 3rd line the function uses the
pointer to the last element to assign the null value to the next
pointer field of the preceding element. After that, the latter becomes
the last element of the list. In the 4th line the function deallocates
the memory allocated for the element pointed by the last_node
pointer.

36 / 55

Implementation Removing an Element From the List

Removing From the List
1 struct list_node *delete_node(struct list_node *list_pointer,
2 int number)
3 {
4 if(list_pointer) {
5 if(list_pointer->data==number)
6 return delete_at_front(list_pointer);
7 else {
8 struct list_node *node = find_node(list_pointer,
9 number);

10 if(node) {
11 if(node->next)
12 delete_in_middle(node);
13 else
14 delete_at_back(node);
15 }
16 }
17 }
18 return list_pointer;
19 } 37 / 55

Implementation Removing an Element From the List

Removing From the List

The delete_node() function just like add_node() function is more
complicated than its counterpart for the singly linked linear list. The
meaning of the parameters and the return value is however the same.
In the 4th line the function checks if the list is not empty. If it is then
it returns the null value stored in the list_pointer parameter.
Otherwise the function checks if the first element of the list should be
removed. If so, it invokes the delete_at_front() function, returns
the value returned by the function and exits. If not, it tries to
find the address of the element that should be removed from the
list, by using the find_node() function. If the latter returns the
null value, what is verified in the 10th line of the delete_node()
function, it means that there is no element to remove in the whole
list and the function performs the statement in the 18th line and
exits.

38 / 55

Implementation Removing an Element From the List

Removing From the List

If however, the address returned by the find_node() function is
not null then the delete_node() function checks in the 11th line
if the element to be removed is in the inside of the list. If so, it
calls the delete_in_middle() function. If not, then it means that
the last element of the list should be removed and in the 14th line
the delete_at_back() function is invoked. Regardless of which of
the two helper functions has been called, after its job is completed,
the delete_node() function returns the value of the list_pointer
parameter and exits.

39 / 55

Implementation Printing the Content of the List

Printing the Content of the List
Printing Forwards and Backwards

1 void print_list_in_both_directions(struct list_node
2 *list_pointer)
3 {
4 struct list_node *backward_pointer = NULL;
5 while(list_pointer) {
6 backward_pointer = list_pointer;
7 printf("%d ",list_pointer->data);
8 list_pointer = list_pointer->next;
9 }

10 puts("");
11 while(backward_pointer) {
12 printf("%d ",backward_pointer->data);
13 backward_pointer = backward_pointer->previous;
14 }
15 puts("");
16 }

40 / 55

Implementation Printing the Content of the List

Printing the Content of the List

The function defined in the previous slide prints the content of the
list’s elements forwards and backwards, i.e. starting from the first
element of the list and starting from the last element of the list.
The first case is performed in the first while loop (lines 5–9). In
the loop the backward_pointer is used that, aside from the first and
last iteration, points the element preceding the element pointed by
the list_pointer parameter. After the first while loop stops the
backward_pointer points the last element of the list. In the second
while loop this pointer is used for traversing the list backwards.
Its value in each of the iterations is replaced by the value stored in
the previous field of the element currently pointed by this pointer
itself.

41 / 55

Implementation Removing the List

Removing the List

1 void remove_list(struct list_node **list_pointer)
2 {
3 while(*list_pointer) {
4 struct list_node *next = (*list_pointer)->next;
5 free(*list_pointer);
6 *list_pointer = next;
7 }
8 }

42 / 55

Implementation Removing the List

Removing the List

The function that removes the list from the computer memory is
the same as the function that removes the singly linked linear list.

43 / 55

Implementation Removing the List

The main() Function
First Part

1 int main(void)
2 {
3 list_pointer = create_list(1);
4 int i;
5 for(i=2; i<5; i++)
6 list_pointer = add_node(list_pointer,i);
7 for(i=6; i<10; i++)
8 list_pointer = add_node(list_pointer,i);
9 print_list_in_both_directions(list_pointer);

44 / 55

Implementation Removing the List

The main() Function
First Part

Just like in the case of the singly linked linear list, the double linked
linear list is created by adding a single element that stores the num-
ber 1. Then the elements storing the numbers ranging from 2 to 4
and from 6 to 9 are added to the list. Next, the content of the list
is displayed on the screen forwards and backwards (9th line).

45 / 55

Implementation Removing the List

The main() Function
Second Part

1 list_pointer = add_node(list_pointer,0);
2 print_list_in_both_directions(list_pointer);
3 list_pointer = add_node(list_pointer,5);
4 print_list_in_both_directions(list_pointer);
5 list_pointer = add_node(list_pointer,7);
6 print_list_in_both_directions(list_pointer);
7 list_pointer = add_node(list_pointer,10);
8 print_list_in_both_directions(list_pointer);

46 / 55

Implementation Removing the List

The main() Function
Second Part

To test the add_node() function, in the main() function of the
program elements are added to the list, that store the following
numbers: 0 (added at the front of the list), 5 (added inside the list),
7 (added inside the list, before an element that stores the same value)
and 10 (added at the end of the list). After each of the operations is
finished the content of the list is displayed forwards and backwards
on the screen.

47 / 55

Implementation Removing the List

The main() Function
Third Part

1 list_pointer = delete_node(list_pointer,0);
2 print_list_in_both_directions(list_pointer);
3 list_pointer = delete_node(list_pointer,1);
4 print_list_in_both_directions(list_pointer);
5 list_pointer = delete_node(list_pointer,1);
6 print_list_in_both_directions(list_pointer);
7 list_pointer = delete_node(list_pointer,5);
8 print_list_in_both_directions(list_pointer);
9 list_pointer = delete_node(list_pointer,7);

10 print_list_in_both_directions(list_pointer);
11 list_pointer = delete_node(list_pointer,10);
12 print_list_in_both_directions(list_pointer);
13 remove_list(&list_pointer);
14 return 0;
15 }

48 / 55

Implementation Removing the List

The main() Function
Third Part

Just like in the case of the add_node() function, to verify the be-
haviour of the delete_node() function, from the doubly linked lin-
ear list are removed elements of the following values: 0 (removed
from the front of the list), 1 (once again removed from the front of
the list), 1 (not removed, it doesn’t exist now), 5 (removed from the
inside of the list), 7 (the first element that stores such a number
is removed) and 10 (removed at the end of the list). After each of
the operations is completed, the content of the list is displayed for-
wards and backwards on the screen. Eventually the main() function
removes the list from the computer memory (13th line) and exits.

49 / 55

Summary

Summary

The presented implementation of the doubly linked linear list is not
the only one that can be created. The list can be implemented with
the use of a linear or multidimensional array, just like the singly
linked linear list. There are also doubly linked linear lists with
sentinels. The doubly linked linear list can be applied for building a
stack or a queue. In some applications the doubly linked lists have
an advantage over the singly linked ones — it is the double link
between each of their elements. It is, for example, important in file
systems where the lists represent files. In that case they are usually
created not in the ram of the computer but in an external storage,
like a hard drive.

50 / 55

Summary

Summary

In the presented functions, like in the delete_in_middle() function
or the delete_at_back() function, a complex expressions created
with the use of the pointers are applied. The next slide shows even
more complicated expressions of this kind. Those are related to the
list in the upper part of the slide. The node pointer which is present
at the beginning of every such an expression is also shown in the
figure. Please try to evaluate each of the expressions.

51 / 55

Summary

Summary

.. next.
null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

.Expression no. 1..

...... node->next->next->data

52 / 55

Summary

Summary

.. next.
null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

.Expression no. 1..

...... node->next->next->data

.
Answer no. 1..
...... 2

52 / 55

Summary

Summary

.. next.
null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

.Expression no. 2..

...... node->previous->previous->previous->data

52 / 55

Summary

Summary

.. next.
null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

.Expression no. 2..

...... node->previous->previous->previous->data

.
Answer no. 2..
...... 5

52 / 55

Summary

Summary

.. next.
null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

.Expression no. 3..

......node->next->next->previous->previous->previous->previous->data

52 / 55

Summary

Summary

.. next.
null

.

5

. next.

previous

.

4

. next.

previous

.

9

. next.

previous

.

1

. next.

previous

.

3

. null.

previous

.

2

.

node

.Expression no. 3..

......node->next->next->previous->previous->previous->previous->data

.
Answer no. 3..
...... 4

52 / 55

Summary

Summary

The rule for reading such expressions is quite simple — follow the
pointers. It is worth to take a closer look at the last expression,
where the previous and next pointers are used together. Those
pointers “cancel out” each other, so the expression can be abbrevi-
ated to the node->previous->previous->data form.
The conclusion from studding such complex pointer expressions is
as follows: Every programmer should know how to read such ex-
pressions and what they mean, but she or he should avoid using
them in programs ©.

53 / 55

The End

Questions

?

54 / 55

The End

The End

Thank You For Your Attention!

55 / 55

	Introduction
	Implementation
	Base Type and List Pointer
	Creating the List
	Adding an Element to the List
	Removing an Element From the List
	Printing the Content of the List
	Removing the List

	Summary

