
.

......

Fundamentals of Programming 2
Singly Linked Linear List and Recursion

Arkadiusz Chrobot

Department of Computer Science

March 30, 2020

1 / 58

Outline

...1 Introduction

...2 Implementation
Base Type and List Pointer
Operation of Adding an Element to the List
Operation of Removing an Element From the List
Operation of Printing the List
Operation of Removing the List
Functional Approach

Performing Operations on the List Returning No Results
Performing Operations on the List That Return Results

...3 Summary

2 / 58

Introduction

Introduction

As it was stated in previous lectures, the base type of such data
structures as stacks and queues is recursive. The type is based on
a structure that contains a pointer field which can point to other
variables of the same type. Those variables are elements (in other
words: nodes) of a data structure. This description also fits to the
singly linked linear list, which is a more general data structure than
the two aforementioned and thus it requires more of basic operations
to be implemented. A question arises, if implementing them with
the use of recursive functions would be beneficial? It shows up,
that applying the recursive approach simplifies many aspects of list
handling. To prove it the program from the previous lecture has
been modified to use mostly recursive functions. Also the relations
between the recursion and the functional programming paradigm
is explained and the usage of such a model in the C language is
demonstrated.

3 / 58

Introduction

Assumptions

The program uses a singly linked linear list to store natural numbers
in the ascending order. So, the list is sorted. Although only natural
numbers are stored in the list by the program, the list can store any
number that is of the int type.

4 / 58

Implementation Base Type and List Pointer

Base Type and List Pointer

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node {
5 int data;
6 struct list_node *next;
7 } *list_pointer;

5 / 58

Implementation Base Type and List Pointer

Base Type and List Pointer

The beginning of the program is unchanged. The same header files
are included as before. The definition of the base type and the
declaration of the list pointer also stay the same. The assumption
about the list pointer discussed in the previous lecture also holds —
the pointer always should point to a fist element of the list or have
the null value.

6 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List

It can be concluded, by applying the recursive approach to the op-
eration of adding a new element to the singly linked linear list, that
there are two cases to consider:

...1 a new element is added to an empty (nonexistent) list,

...2 a new element is added to an existing (nonempty) list.
The second case covers all situations related to inserting a new ele-
ment to the existing sorted list, i.e. adding at the beginning, inside
and at the end. Please note, that there is no need for the operation
of creating the list in the recursive approach. It is covered by the
first case.
The operation of adding a new element to the list is implemented
with the use of a “main” function and a helper function. The latter
is described first.

7 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The create_and_add_node() Function

1 int create_and_add_node(struct list_node **list_pointer,
2 int number)
3 {
4 struct list_node *new_node = (struct list_node *)
5 malloc(sizeof(struct list_node));
6 if(!new_node)
7 return -1;
8 new_node->data = number;
9 new_node->next = *list_pointer;

10 *list_pointer = new_node;
11 return 0;
12 }

8 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The create_and_add_node() Function

The function, as its name suggests, creates a new element and inserts
it to the list. It returns a value of the int type, which is a status of
the operation. It also has two parameters. The first one is a pointer
to a pointer of the list base type. The second one is a variable of
the int type and it is used for passing a number which should be
stored in the new element. Please note, that the function body is
quite simple. In the lines no. 4 and 5 the function tries to allocate
memory for the new element. If the allocation fails the function
returns -1 and exits. If it is however successful, then the number
is assigned to the element (line no. 8) and in the next field of the
same element is stored an address stored in a variable pointed by
the pointer to a pointer (line no. 9). Next, the address of the new
element is assigned to the aforementioned variable, and the function
exits returning zero.

9 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The create_and_add_node() Function

The create_and_add_node() function performs activities which cor-
respond to all cases of adding a new element to the sorted list
in the program from the previous lecture and additionally to the
operation of creating a new list (adding the first element to the
list). A question arises, how such a simple function can cover all
those cases that in the previous version of the program required
defining several separate functions? The answer is given after the
add_node() function, which is responsible for finding a spot in the
list where the new element should be added and for invoking the
create_and_add_node() function, is analysed.

10 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

1 int add_node(struct list_node **list_pointer, int number)
2 {
3 if(*list_pointer!=NULL && (*list_pointer)->data<number)
4 return add_node(&(*list_pointer)->next,number);
5 else
6 return create_and_add_node(list_pointer,number);
7 }

11 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

The add_node() function has the same, with the exception of the
name, prototype as the create_and_add_node() function. Also
the meaning of its return value is the same as in the previously
described function. However, the pointer to a pointer parameter
has a different role. When the function is invoked for the first time
the parameter stores the address of the list pointer, so any operation
that changes the value of the parameter is also changing the value
of the pointer. If the function is invoked recursively (line no. 4)
then the parameter will store the address of the next field of the
list element which was pointed by the parameter previously. Let’s
analyse all possible scenarios of the function behaviour:
Adding an element to an empty list.
The *list_pointer!=NULL expression, which is a part of the con-
dition in the 3rd line, is false, thus the create_and_add_node()
function is called immediately in the line no. 6, and it creates and
adds the first and only element to the list. 12 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

Adding an element at the beginning of the list.
In this case the first expression in the condition in 3rd line is true,
but the second one (the one after the && operator) is false, thus once
again the create_and_add_node() function is called immediately
in the 6th line, which adds an element at the beginning of the list.
Adding an element inside the list.
This time both expressions in the condition in 3rd line are true and
the function is invoked recursively (line no. 4). Those invocations
are preformed as long as the second expression in the aforemen-
tioned condition becomes false. When it happens it means that the
instance (invocation) of the function, for which it happened, should
add a new element before the element pointed by the variable, which
address is stored in the list_pointer parameter. The variable is
the next field of the element that precedes in the list the element
before which the new element has to be inserted. The case is illus-
trated in the next slide. 13 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
Relationship Between struct list_node **list_pointer and the next Field

.. **list_pointer.

next

.

next

.

next

Explanation of the relationship between pointer to a pointer and the
next field of a list element

14 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
Relationship Between struct list_node **list_pointer and the next Field —
Comment

The next field and the **list_pointer pointer are marked in the
figure in the previous slide by yellow ellipses. It means that those
two variables should be considered as one, i.e. making changes to
one of them will cause immediate change of the value of the second
one.

15 / 58

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

Adding an element inside the list — continued.
The element is created and added by the create_and_add_node()
function invoked in the 6th line.
Adding at the end of the list.
In this case, after a sequence of recursive invocations, an instance of
the function is created, for which the first expression in the condition
in the 3rd line is not satisfied. It means that the new element should
be added at the end of the list. As in the previous cases the ele-
ment is actually created and added by the create_and_add_node()
function invoked in the 6th line of the add_node() function.

16 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List

The recursive version of the operation of removing an element from
a sorted singly linked linear list consist just of locating an element
storing the given value in the list, and removing it. The course of the
operation is always the same, regardless of where the element is in
the list. Let’s remind, that if there is more then one element in the
list that has the given value, then removing the one that is found
as the first satisfies the assumptions for the operation. The next
slide contains the definition of a recursive function that implements
the operation of removing a single element from the list. Its source
code is so short that it doesn’t require partitioning into separate
subroutines.

17 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List
The delete_node() Function

1 void delete_node(struct list_node **list_pointer, int number)
2 {
3 if(*list_pointer) {
4 if((*list_pointer)->data == number) {
5 struct list_node *next = (*list_pointer)->next;
6 free(*list_pointer);
7 *list_pointer = next;
8 } else
9 delete_node(&(*list_pointer)->next, number);

10 }
11 }

18 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List
The delete_node() Function

The function presented in the previous slide doesn’t return any
value, since it doesn’t generate any exceptions and its effects are
visible after the list is printed on the screen. The function has two
parameters — the first one is a pointer to a pointer of the struct
list_node type, and the second one is of the int type. By the latter
the number is passed that should be stored in the list element to be
removed. When the function is called for the first time it checks if
the list is not empty (line no. 3). If the list exists then the function
checks if the first element of the list contains the value passed by
the second parameter. If so, then the element should be removed.
It that case the address stored in the next field of the element is
assigned to a local pointer (line no. 5) and the memory allocated for
the element is freed. Next, the *list_pointer variable is assigned
an address which was stored in the next field of the removed ele-
ment. It is an address of then second and now first element of the
list. 19 / 58

Implementation Operation of Removing an Element From the List

Operation of Removing an Element From the List
The delete_node() Function

If however the condition in the 4th line is not satisfied for the first
element, then the function is invoked recursively (line no. 9) in order
to find such an element of the list that would satisfy it. Please note,
that as the first argument for the call is passed the address of the
next field of the list element accessed in the current instance of the
function. Thus any modification of the value of the first parameter
made in the next instance of the function will be also made to the
value of the field. In that way the statements in lines no. 5, 6 and 7
handle also the cases where the element is removed from the inside
of the list and at its end. If the list doesn’t contain an element to be
removed, then the function is eventually called recursively for the
next field that contains the null value. In that case it does nothing,
just exits, like its previous recursive invocations. That way the case
of removing a nonexistent element from the list is handled by the
function.

20 / 58

Implementation Operation of Printing the List

Operation of Printing the Content of the List

The recursive version of the operation of printing the content of the
list is as short as its iterative version. It can be simply described in
the following way:

...1 if the list exists then print the value of its first element,

...2 print the content of the rest of the list.
The next slide contains definition of a function that implements the
operation.

21 / 58

Implementation Operation of Printing the List

Operation of Printing the Content of the List
The print_list() Function

1 void print_list(struct list_node *list_pointer)
2 {
3 if(list_pointer) {
4 printf("%d ",list_pointer->data);
5 print_list(list_pointer->next);
6 } else
7 puts("");
8 }

22 / 58

Implementation Operation of Printing the List

Operation of Printing the List
The print_list() Function

The print_list() function doesn’t return any value — its results
are visible on the screen. It takes only one argument, and it is
the list pointer. In the 3rd line the function checks if the pointer
passed by the function’s parameter is not empty. If the condition is
satisfied then the function prints the value of the data field of the
element of the list which address is passed by the parameter and
invokes itself recursively taking as an argument the address stored
in the next field of the currently accessed element of the list. If
the address in not null then another element of the list exists for
which the next instance of the function will perform the statements
in the 4th and 5th lines. Otherwise the next recursive invocation
of the function will move the cursor to the next line on the screen,
using the puts() function, and exit. In that case also the previous
recursive invocations of the print_list() function will exit.

23 / 58

Implementation Operation of Printing the List

Operation of Printing the List in Reversed Order
The print_list_inversely() Function

It occurs that a small modification of the print_list() function
makes it possible to perform an operation which was very hard to do
in the iterative version — printing the values of the elements of the
list in the reversed order. It suffice to swap the statements in the
3rd and 4th lines, so that the value of the element is printed after
the function returns from the recursive invocation. This version
of the print_list() function is not calling the puts() function.
The latter should be called after the value of the first element is
displayed on the screen and it is difficult to detect. The cursor can
be moved to the next line on the screen after the function exits. The
next slide contains the definition of the print_list_inversely()
function which contains the described changes.

24 / 58

Implementation Operation of Printing the List

Operation of Printing the List in Reversed Order
The print_list_inversely() Function

1 void print_list_inversely(struct list_node *list_pointer)
2 {
3 if(list_pointer) {
4 print_list_inversely(list_pointer->next);
5 printf("%d ",list_pointer->data);
6 }
7 }

25 / 58

Implementation Operation of Removing the List

Operation of Removing the List

The operation of removing of all the element of the list is similar to
the operation of printing the content of the list in the reversed order.
The difference is in the declaration of the parameter of the function
(this time it is a pointer to a pointer) and in the operation that is
performed on the element. The next slide contains the definition of
the remove_list() function which performs such an operation.

26 / 58

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Function

1 void remove_list(struct list_node **list_pointer)
2 {
3 if(*list_pointer) {
4 remove_list(&(*list_pointer)->next);
5 free(*list_pointer);
6 *list_pointer = NULL;
7 }
8 }

27 / 58

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Operation

The function doesn’t return any value, but has a single parameter
which is a pointer to a pointer of the struct list_node type. When
the function is invoked for the first time it checks (line no. 3) if the
list exists. If so, it calls itself recursively in the 4th line. It keeps
invoking itself until one of its instances is called for the next field of
the last element in the list. The filed stores the null value and the
instance of the function does nothing except exiting. The control
flow goes back to 5th line of the instance of the function called for
the last element of the list. Here, the instance frees the memory
allocated for that element and assigns the null value to the next
filed of the element that was last but one on the list. The instance
exits and the control flow returns to the instance called for the last
but one element, which will repeat the described activities for that
element. The returns will be finished when the first element of the
list is deallocated and the instance invoked for that element will
exit. 28 / 58

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Function

Please note, that the 4th and 5th lines of the described function can-
not be swapped, otherwise the function would be invoked recursively
for nonexistent elements of the list.

29 / 58

Implementation Functional Approach

Functional Approach

The recursion is strongly related to the functional paradigm of pro-
gramming, where it is used in place of the iteration. It is not the
only one element of this paradigm. In the functional model the most
important concept is the function. The variables are immutable, i.e.
the values that are assigned to them cannot be changed. Thus any
subroutine that operates on such variables has no side-effects. Func-
tions can be passed by parameters to other functions which perform
operations on them or use them for performing other operations.
The latter functions are called the higher order functions. The C
language doesn’t support directly the higher order functions or the
functional paradigm, but similar effects can be achieved with the
use of function pointers.

30 / 58

Implementation Functional Approach

Performing Operations on the List that Return No
Results

In the next slide a function is defined that recursively traverses the
list and performs an operation for each of its elements. The opera-
tions is defined by another function, which address is passed to as
an argument to the former function.

31 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The iterate_list() Function

1 void iterate_list(struct list_node *list_pointer,
2 void (*action)(struct list_node *))
3 {
4 if(list_pointer) {
5 if(action)
6 action(list_pointer);
7 iterate_list(list_pointer->next,action);
8 }
9 }

32 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The iterate_list() Function

The function doesn’t return any value but has two parameters. The
first one is used for passing the list pointer and the second for passing
the address of a function which also doesn’t return any value but
takes as an argument the address of an element of the list for which
it performs an operation. The iterate_list() function is a higher
order function. In the 4th line it checks if the list pointer which
it received by its first parameter is not empty. If the condition is
satisfied the function checks if the pointer to the function is also not
empty. If not, no operation is performed on the currently accessed
list’s element, just the iterate_list() calls itself recursively (line
no. 7). Otherwise the function pointed by the action pointer is
invoked for the element of the list that is accessed by the current
instance of the iterate_list() function.

33 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The print_element() Function

1 void print_element(struct list_node *list_pointer)
2 {
3 printf("%d ",list_pointer->data);
4 }

34 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The print_element() Function

The print_element() function defines an example operation for a
single element of the list — it prints the value of the data field
of the element on the screen. If the iterate_list() function is
called with the address of the print_element() function as its sec-
ond argument, then it will print the values of all elements of the
list on the screen. The only difference between the result of the
iterate_list() function and the result of the print_list() func-
tion is that the former doesn’t moves the cursor to the next line of
the screen.

35 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The double_element_value() Function

1 void double_element_value(struct list_node *list_pointer)
2 {
3 list_pointer->data*=2;
4 }

36 / 58

Implementation Functional Approach

Performing Operations on the List Returning No
Results
The double_element_value() Function

The function, when invoked by the iterate_list() function, dou-
bles the value of the data field of the element which address is passed
to it by its parameter. Hence, in that case the iterate_list()
function doubles values of all elements of the list.

37 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results

The presented higher order function makes it possible to perform op-
erations which change the values of the elements of the list, like the
double_element_value() function. It is not however completely
compatible with the functional paradigm of programming in which
once assigned variables don’t change their values. Let’s try to define
another higher order function which returns a result of the opera-
tions performed on the list by functions invoked by it. The definition
of the function is given in the next slide.

38 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The iterate_list_with_result() Function

1 int iterate_list_with_result(struct list_node *list_pointer,
2 int (*action)(int result, struct list_node *list_pointer))
3 {
4 int result=0;
5 for(; list_pointer; list_pointer=list_pointer->next)
6 if(action)
7 result=action(result,list_pointer);
8 return result;
9 }

39 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The iterate_list_with_result() Function

The function is similar to the iterate_list() function, but in con-
trast to it the former function takes as a second argument an address
of a function that returns a value of the int type and has two param-
eters. By the first parameter a variable is passed, which is used for
accumulating results of previous operations carried out by the func-
tion on elements of the list. Such a parameter is redundant in lan-
guages which directly support the functional programming model,
but it is necessary in the C language. The second parameter is a
pointer to an element of the list for which the operation has to be
carried out. The iterate_list_with_result() function uses the
iteration instead of the recursion (line no. 5) to traverse the list.
The loop allows it to use the local variable result in the 7th line
for storing the results of previously carried operations on the al-
ready visited elements of the list. To make it possible, the variable
is passed as the first argument to the function invoked with the help
of the action parameter. 40 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The add_up() Function

1 int add_up(int result, struct list_node *list_pointer)
2 {
3 return result+list_pointer->data;
4 }

41 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The add_up() Function

The function presented in the previous slide is an example of a
function that can be invoked by the iterate_list_with_result()
function. If it happens the latter will return the sum of the values
of all elements of the list. The value will be correct if it is in the
range of the int type.

42 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The count_elements() Function

1 int count_elements(int result, struct list_node *list_pointer)
2 {
3 return result+1;
4 }

43 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
The count_elements() Function

If the function presented in the previous slide is invoked by the
iterate_list_with_result() function then the latter will return
the number of the elements in the list. The result will be correct if
the number is in the range of the int type.

44 / 58

Implementation Functional Approach

Performing Operations on the List That Return Results
Summary

Please note, that the presented solution limits the possible opera-
tions to only those that return as a result a value of the int or
compatible type. The typical functional programming languages
doesn’t have such limitations, because they are in most cases dy-
namically typed. It means that the programmer doesn’t have to
define the types for variables, parameters and the values returned
by the functions. They are dynamically defined when the program
runs.

45 / 58

Implementation

The main() Function

In the main function of the program all the previously defined func-
tions are invoked. Just as in the program presented in the previous
lecture, their behaviour is tested for all the most important cases.

46 / 58

Implementation

The main() Function
First Part

1 int main(void)
2 {
3 int i;
4 for(i=1; i<5; i++)
5 if(add_node(&list_pointer,i)==-1)
6 fprintf(stderr,"Adding an element to the list exception!\n");
7 for(i=6; i<10; i++)
8 if(add_node(&list_pointer,i)==-1)
9 fprintf(stderr,"Adding an element to the list exception!\n");

10 print_list(list_pointer);

47 / 58

Implementation

The main() Function
First Part

In the first part of the main() function, which is presented in the
previous slide, a list is created that contains natural numbers rang-
ing for 1 to 4 and form 6 to 9. Please note, that the whole operation
is carried out with the use of the add_node() function. Each time
the function is called its result is checked. Should it be equal -1
the program prints a message about the failure of adding a new
element to the list. Please observe, that the first argument of the
add_node() function is the address of the list pointer. After the list
is created its content is displayed on the screen by the print_list()
function.

48 / 58

Implementation

The main() Function
Second Part

1 if(add_node(&list_pointer,0)==-1)
2 fprintf(stderr,"Adding an element to the list exception!\n");
3 print_list(list_pointer);
4 if(add_node(&list_pointer,5)==-1)
5 fprintf(stderr,"Adding an element to the list exception!\n");
6 print_list(list_pointer);
7 if(add_node(&list_pointer,7)==-1)
8 fprintf(stderr,"Adding an element to the list exception!\n");
9 print_list(list_pointer);

10 if(add_node(&list_pointer,10)==-1)
11 fprintf(stderr,"Adding an element to the list exception!\n");
12 print_list(list_pointer);

49 / 58

Implementation

The main() Function
Second Part

In the second part of the main() function, single elements are added
at the beginning, in the middle and at the end of an existing list.
Also an element is added that stores a value that is already in the
list. After each such an operation is carried out the result returned
by the add_node() function is checked and the content of the list is
displayed on the screen with the use of the print_list() function.

50 / 58

Implementation

The main() Function
Third Part

1 print_list_inversely(list_pointer);
2 puts("");
3 delete_node(&list_pointer,0);
4 print_list(list_pointer);
5 delete_node(&list_pointer,1);
6 print_list(list_pointer);
7 delete_node(&list_pointer,1);
8 print_list(list_pointer);
9 delete_node(&list_pointer,4);

10 print_list(list_pointer);
11 delete_node(&list_pointer,7);
12 print_list(list_pointer);
13 delete_node(&list_pointer,10);
14 print_list(list_pointer);

51 / 58

Implementation

The main() Function
Third Part

In the third part of the main() function the list content is printed
in the reversed order with the use of the print_list_inversely()
function. The cursor is moved to the next line on the screen after the
function exits, more precisely in the 2nd line of the described part
of the program. Next, elements from the beginning, the middle and
the end of the list are removed. The program also tries to remove a
nonexistent element (line no. 7) and an element that stores a number
which is represented twice in the list (line no. 11). After each of the
operations is performed, the content of the list is displayed on the
screen.

52 / 58

Implementation

The main() Function
Forth Part

1 iterate_list(list_pointer,NULL);
2 iterate_list(list_pointer,print_element);
3 puts("");
4 iterate_list(list_pointer,double_element_value);
5 iterate_list(list_pointer,print_element);
6 puts("");
7 printf("The sum of the values of the list's elements: %d\n",
8 iterate_list_with_result(list_pointer,add_up));
9 printf("The number of the list's elements: %d\n",

10 iterate_list_with_result(list_pointer,count_elements));
11 remove_list(&list_pointer);
12 return 0;
13 }

53 / 58

Implementation

The main() Function
The Forth Part

In the forth part of the main() function are invoked all functions
that in the functional programming paradigm are called higher order
functions. First the iterate_list() function is called, but with no
valid address of a function that performs an operation on the list.
This verifies if the function behaves correctly under such circum-
stances. Next, the content of the list is displayed with the use of
the iterate_list() function invoked with an argument which is
the address of the function that prints the value of a single element
of the list. Please note, that the cursor is moved to the next line on
the screen after the function exits. In the 4th line the same function
is called with the address of the double_element_value() function
passed as an argument. This time the iterate_list() function
doubles the value of each of the elements of the list. Then, the con-
tent of the list is displayed on the screen using the iterate_list()
function (please compare lines no. 2 and no. 5).

54 / 58

Implementation

The main() Function
The Forth Part

Next, the iterate_list_with_result() function is tested. First
it is called with the address of the add_up() function passed as
an argument, and then with the address of the count_element()
function. In the first case it sums up values of all the elements in
the list. In the second one it counts the number of the elements.
Eventually, the list is removed.

55 / 58

Summary

Summary
Using the recursion allows for shortening the definitions of functions
that implement operations on the singly linked linear list. In the case
of printing the content of the list on screen in the reversed order, the
recursion greatly simplifies the implementation of such an operation.
That allows for concluding that the recursion technique should be
known to any decent programmer.
Examples of applications elements of functional programming for
performing operations on the list are presented in the lecture. The
aforementioned programming model gains recently on interest, be-
cause it makes it possible to avoid many issues with concurrent pro-
gramming. Those problems are related to the imperative program-
ing paradigm, which also means that they are present in the struc-
tural, procedural and object-oriented paradigms. The C language
doesn’t support directly the functional programming paradigm, thus
the presented solutions are not “purely” functional, but still are
worth studying.

56 / 58

The End

Questions

?

57 / 58

The End

The End

Thank You For Your Attention!

58 / 58

	Introduction
	Implementation
	Base Type and List Pointer
	Operation of Adding an Element to the List
	Operation of Removing an Element From the List
	Operation of Printing the List
	Operation of Removing the List
	Functional Approach

	Summary

