
.

......

Fundamentals of Programming 2
Singly Linked Linear List

Arkadiusz Chrobot

Department of Computer Science

March 23, 2020

1 / 57

Outline

...1 Singly Linked Linear List

...2 Implementation
Base Type and List Pointer
Creating a List
Operation of Adding an Element to the List

Adding a New Element at the Front of the List
Adding a New Element Inside and at the Back of the List

Operation of Removing an Element from the List
Removing from the Beginning of the List
Removing From the Middle and at the End of the List

Operation of Displaying the Content of the List
Operation of Removing the List

...3 Applications

...4 Summary

2 / 57

Singly Linked Linear List

Singly Linked Linear List

A singly linked linear list is an abstract data structure that can store
sorted or unsorted data. Unlike an array, the list provides only a
sequential access to its elements, but a new element can be added in
any spot of the list. The operation of removing an element from the
list has the same property. There are several kinds of lists. Stacks
and queues are special cases of such data structures. The singly
linked linear list distinguishes itself from other lists in that it posses
a beginning and ending (the first and the last element) and in that
it allows traversing its elements only in one direction, at least by
default.

3 / 57

Singly Linked Linear List

Singly Linked Linear List
Singly Linked Linear List

The singly linked linear list can be implemented in the form of a
dynamically allocated data structure. This implementation of the
list is the main subject of the lecture. It is also possible to implement
such a list with the use of an array. However, this possibility is only
shortly discussed at the end of the lecture. Just like in the case of
other abstract data structures, to implement the list in the form of
a dynamically allocated data structure, the definition of the base
data type and operations for the data structure are required. In
an example program only five basic operation on the singly linked
linear list are implemented: creating a list, adding a new element,
removing an element, printing the content of the list and removing
the whole list. Also an operation of searching for an element in the
list that stores certain value is implemented in some form.

4 / 57

Implementation

Implementation

A program that stores natural numbers in the list is used as an
example for explaining the details of the singly linked linear list
implementation, although the list can also store integer numbers.
The list is also sorted, i.e. the values stored in the list are sorted in
an ascending order.

5 / 57

Implementation Base Type and List Pointer

Base Type and List Pointer

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 struct list_node {
5 int data;
6 struct list_node *next;
7 } *list_pointer;

6 / 57

Implementation Base Type and List Pointer

Base Type and List Pointer

In the program are included the same header files as in the programs
from the previous lecture. Also the base type of the list is the same
as for queues and stacks with the exception of the name. Just like in
the case of the other data structures the base type can be adjusted
to the current needs of the programmer by adding fields for storing
data. Also a new pointer fields can be added to the data base, but
always at least one pointer field has to exist that allows connecting
elements of the list. The pointer filed in the last element of the list
has always the null value. In the presented program the base type
has one field of the int type that is used for storing a number and
another field which is a pointer to the next element. The definition
of the type is merged with the definition of the list pointer (line no.
7). The pointer is a global variable and it should hold the address
of the first element of the list or be an empty pointer is the list is
also empty.

7 / 57

Implementation Creating a List

Creating a List

The operation of creating a list, or in other words adding its first
element, can be implemented in many ways. In the presented pro-
gram it is delegated to a separate function, which source code is
presented in the next slide.

8 / 57

Implementation Creating a List

Creating a List
The create_list() Function

1 struct list_node *create_list(int data)
2 {
3 struct list_node *first =
4 (struct list_node *)malloc(sizeof(struct list_node));
5 if(first) {
6 first->data = data;
7 first->next = NULL;
8 }
9 return first;

10 }

9 / 57

Implementation Creating a List

Creating a List
The create_list() Function

The function creates the first element of the list. It takes as an
argument the number that should be stored in the element and
returns the address of the element, if the operation of creating it is
successful. Otherwise the function returns null. The memory for
the new element is allocated in the lines no. 3 and no. 4. If the
allocation is successful, the function initializes fields of the element
and returns its address. If the operations fails the function returns
the null value stored in the first pointer. Please observe, that the
next filed of the first element is initialized with null value, because
this is the first and at the same time the last element of the list. The
value returned by the create_list() function should be assigned
to the list pointer.

10 / 57

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List

It is assumed that the operation of adding a new element to the
list is always performed for an existing (i.e. nonempty) list. Addi-
tionally, it is required that the list pointer should point to the first
element of the list before and after the new element is added and
that the numbers in the list should be sorted in an ascending order.
If creating the new element fails the list should stay the same as it
was before.

11 / 57

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
Implementation

If the list is to store numbers in an ascending order then the following
three cases of adding a new element to the list should be carefully
considered:

...1 the element is added at the beginning of the list; it becomes
the first element of the list,

...2 the element is added inside the list,

...3 the element is added at the end of the list; it becomes the last
element of the list.

Adding of an element to the list is performed by a single function,
however with the help of supporting functions that take care of each
of the described cased. Attention! To make it easier to understand
the implementation of the operation of adding a new element to the
list, all those functions are presented and described in reverse order
to the order they are defined in the program. The source code of
the program is available on the course website.

12 / 57

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

1 struct list_node *add_node(struct list_node *list_pointer, int data)
2 {
3 struct list_node *new_node = (struct list_node *)
4 malloc(sizeof(struct list_node));
5 if(list_pointer && new_node) {
6 new_node->data = data;
7 if(list_pointer->data>=data) {
8 return add_at_front(list_pointer, new_node);
9 } else {

10 struct list_node *node= find_spot(list_pointer,data);
11 add_in_middle_or_at_back(node,new_node);
12 }
13 }
14 return list_pointer;
15 }

13 / 57

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

The add_node() function is the aforementioned function that adds
a new element to the list. It takes two arguments. The first one
is the list pointer and the second one is the number that should be
stored in the new element. The function returns the address of the
first element of the list. It is useful when the new element is added
at the beginning of the list. In other cases the function returns
the same address as it gets through the list_pointer parameter.
The result of the function should be assigned to the list pointer.
The add_node() function allocates memory for the new element
and then it verifies if the operation has been successful and if the
list exists (line no. 5). Please note, that a memory leak would be
possible if the element was created and the list was empty. In that
case the function would return the null value, but it wouldn’t add
the element to the list, so its address would be lost.

14 / 57

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

In the presented program such a situation won’t happen, because
the function is always called after the created_list() function.
However, if the function is to be used in other program, a care
should be taken to pass the pointer to a nonempty list to it. If the
list and the new element exist then the function initializes the data
field of the new element (line no. 6). The initialization of the next
field is not necessary, because the appropriate value is assigned to
it by the other functions. After the new element is initialized the
add_node() function has to recognize which of the three cases it
should handle. The list to which the element is added is sorted in
an ascending order, so if the number stored in the new element is
less than or equal to the number stored in the current first element
of the list, then the element should be added at the front of the
list. This condition is tested in the 7th line. If it is satisfied then
the add_at_front() function is called and the add_node() function
returns the address returned by the former function and exits. 15 / 57

Implementation Operation of Adding an Element to the List

Operation of Adding an Element to the List
The add_node() Function

If the condition in the 7th line is not satisfied then there has to
be one of the two remaining cases: either the new element should
be added inside the list or at its back. It occurs, that both those
cases can be handled in the same way. First, the element has to be
located behind which the new element ought to be added in the list.
This task is handled by the find_spot() function, which returns
the address of such an element. The address is then stored in the
node pointer. The existence of the list has been already checked
before the find_spot() function is called, so the function always
finds the appropriate element of the list, and the node pointer is
never an empty pointer. After the element in the list is located the
add_node() function calls the add_in_the_middle_or_at_back()
function which eventually adds the new element to the list.

16 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element at the Front of the List
The add_at_front() Function

1 struct list_node *add_at_front(struct list_node *list_pointer,
2 struct list_node *new_node)
3 {
4 new_node->next = list_pointer;
5 return new_node;
6 }

17 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element at the Front of the List
The add_at_front() Function

The add_at_front() function is similar to the push() function de-
fined for the stack. The former takes two arguments: the address
of the first element of the list (the list pointer in other words) and
the pointer to the new element. Because the existence of the list
and the new element is conformed by the add_node() function, the
add_at_front() function doesn’t have to verify it again. However,
the latter function shouldn’t be used outside the add_node() func-
tion without checking the value of the pointers that are passed to
it. In the 4th line of the function the address of the current first
element of the list is assigned to the next field of the new element,
and then, in the 5th line the function returns the address of the new
element (it is now the first element of the list) and exits.

18 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The find_spot() Function

1 struct list_node *find_spot(struct list_node *list_pointer,
2 int data)
3 {
4 struct list_node *previous = NULL;
5 while(list_pointer && list_pointer->data<data) {
6 previous = list_pointer;
7 list_pointer = list_pointer->next;
8 }
9 return previous;

10 }

19 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The find_spot() Function

The find_spot() function is responsible for locating an element of
the list after which a new element has to be added and for returning
its address. Just like in the case of the add_at_front() function,
checking the pointer list value is not needed since it has been con-
firmed by the add_node() function. The number stored in the new
element is also passed to the find_spot() function. The elements
of the list are traversed in the while loop with the use of the list
pointer that is passed to the function by a value. Also the previous
pointer declared in the 4th line is used in the loop. It points the
element of the list preceding the element pointed by the list pointer.
If the value of the list pointer becomes null, the previous pointer
will point to the last element of the list.

20 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The find_spot() Function

According to the condition from the line no. 5 the loop stops when
the list pointer points to an element of the list that stores a number
which is equal or greater than the number stored in the new element
or when the value of the list pointer is null. In the latter case the
new element should be added at the end of the list, because it stores
the biggest number in the list. Summarizing: after the while loop
stops, the list_pointer variable points to an element of the list
before which the new element should be added or it has the value of
null. The previous pointer points to the element of the list after
which the new element should be added and its value is returned by
the function.

21 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The add_in_middle_or_at_back() Function

1 void add_in_middle_or_at_back(struct list_node *node,
2 struct list_node *new_node)
3 {
4 new_node->next = node->next;
5 node->next = new_node;
6 }

22 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The add_in_middle_or_at_back() Function

The add_in_middle_or_at_back() function job is to add a new
element at the end or inside the list. After it exits the list should
be consistent, i.e. the list should have a new element and all the
elements should be linked together. By the first parameter is passed
the address of the element after which the new one should be added.
The address of the new element is passed by the second parameter.
Because the function is called by the add_node() function there is no
need for verifying those pointers. In the 4th line of the function the
address of the element of the list which succeeds the one pointed by
the node parameter is assigned to the next field of the new element.
In the 5th line the address of the new element is stored in the next
field of the list’s element pointed by the node parameter. After the
assignments are preformed the new element becomes a part of the
list. The lines no. 4 and no. 5 cannot switch places. The next slide
contains an animation that illustrates the described activities. 23 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The add_in_middle_or_at_back() Function

.. next. next.

node

.

new_node

.

null

Before the line no. 4 of the add_in_middle_or_at_back() function is
performed.

24 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The add_in_middle_or_at_back() Function

.. next. next.

node

.

new_node

.

next

After the line no. 4 of the add_in_middle_or_at_back() function is
performed.

24 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The add_in_middle_or_at_back() Function

.. next. next.

node

.

new_node

.

next

After the line no. 5 of the add_in_middle_or_at_back() function is
performed.

24 / 57

Implementation Operation of Adding an Element to the List

Adding a New Element Inside and at the Back of the
List
The add_in_middle_or_at_back() Function

Let’s consider the behaviour of the add_in_middle_or_at_back()
when the element pointed by the node pointer is the last element
of the list. In that case, in 4th line of the function, the null value
is assigned to the next filed of the new element, because that value
is stored in the next field of the current last element of the list,
which is pointed by the node variable. In the 5th line the address
of the element which is added to the list is stored in the next filed
of the element of the list pointed by the node pointer. Thus, the
new element becomes the last element of the list and it satisfies the
most important condition for such an element — its next field has
the null value.

25 / 57

Implementation Operation of Adding an Element to the List

Adding an Element to the List — Summary

The add_node() function could be written without splitting its
source coded into smaller functions, but its definition would be prob-
ably longer and less readable. If increasing the efficiency of the func-
tion was required the helper functions would be defined with the use
of static inline keywords. In that case the compiler would likely
handle them in similar fashion as the preprocessor handles macros.
The operation of adding an element to the list can be implemented
in a different way than presented. For example the list pointer could
be passed to the add_node() function with the use of pointer to a
pointer.

26 / 57

Implementation Operation of Removing an Element from the List

Operation of Removing an Element from the List

The operation of removing a single element from a singly linked
linear list, similarly to the operation of adding an element to the
list, has to be performed on a list that has at least one element. An
element will be removed if it contains a specified number. If there
is more than one element on the list that stores the number then
the first which will be found will be removed. After the operation is
performed the list should have one element less, but it still should
be consistent or be empty.

27 / 57

Implementation Operation of Removing an Element from the List

Operation of Removing an Element from the List
Implementation

When implementing the operation of removing a single element from
the list, the following four cases should be considered:

...1 the element to be removed is the first element of the list,

...2 the element to be removed is inside the list,

...3 the element to be removed is the last element of the list,

...4 there is no element in the list that should be removed; the list
should stay the same as it was.

Like in the case of adding, removing of an element is performed by
a single function which uses several helper functions. The functions
are presented and described in reversed order to the order they are
defined in the program.

28 / 57

Implementation Operation of Removing an Element from the List

Operation of Removing an Element from the List
The delete_node() Function

1 struct list_node *delete_node(struct list_node *list_pointer,
2 int data)
3 {
4 if(list_pointer) {
5 if(list_pointer->data==data)
6 return delete_at_front(list_pointer);
7 else {
8 struct list_node *previous =
9 find_previous_node(list_pointer,data);

10 delete_middle_or_last_node(previous);
11 }
12 }
13 return list_pointer;
14 }

29 / 57

Implementation Operation of Removing an Element from the List

Operation of Removing an Element from the List
The delete_node() Function

The delete_node() function is responsible for removing a single
element from a list. It takes the list pointer and the number that
should be stored in the removed element as arguments. The function
returns the address of the first element of the list, which should be
assigned to the list pointer. If the function removes the first element
of the list it will return the address of an element that becomes the
new first element in the list, otherwise it will return the value passed
to it by its first parameter. In the 4th line the function checks if
the list exists. If so, it tries to locate the element that should be
removed and if it is found, the function removes it. In the 5th line
the function tests if the first element of the list should be removed.
To this end it compares the number passed to the function by its
second parameter with the number stored in the data field of the
element.

30 / 57

Implementation Operation of Removing an Element from the List

Operation of Removing an Element from the List
The delete_node() Function

If the condition is satisfied, the delete_node() function invokes
the delete_at_front() function, which performs the operation of
removing the first element of the list and returns the address of
the new first element of the list which in turn is returned by the
delete_node() function which also exits. Otherwise, the latter
function has to find the element, which should be removed from
the list, and so it calls the find_previous_node() function which
returns the address of the element preceding the element that should
be removed. It can however happen, that there is no element to
be removed in the list. In that case the find_previous_node()
function returns the address of the last element of the list. All
other cases of removing an element from the list are handled by
the delete_middle_or_last_node() function, which is described
in the next slides.

31 / 57

Implementation Operation of Removing an Element from the List

Removing from the Beginning of the List
The delete_at_front() Function

1 struct list_node *delete_at_front(struct list_node *list_pointer)
2 {
3 struct list_node *next = list_pointer->next;
4 free(list_pointer);
5 return next;
6 }

32 / 57

Implementation Operation of Removing an Element from the List

Removing From the Beginning of the List
The delete_at_front() Function

The first element of the list is removed by the delete_at_front()
function. The function takes as arguments the address of the first
element of the list and it returns the address of the element that
was second in the list, before the function was invoked. The latter
element becomes the first one in the list after the function exits.
The result of the function is returned to the delete_node() func-
tion and eventually assigned to the list pointer. The behaviour of
the delete_at_front() function is similar to the behaviour of the
pop() function defined for a stack. Because the former function in
invoked by the delete_node() function, no verification of the list
pointer is required. In the 3rd line the function stores the address of
the second element in the list in a local pointer named next. Then
it frees memory allocated for the first element of the list (line no. 4)
and returns the address of the new first element of the list (line no.
5).

33 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The find_previous_node() Function

1 struct list_node *find_previous_node
2 (struct list_node *list_pointer, int data)
3 {
4 struct list_node *previous = NULL;
5 while(list_pointer && list_pointer->data!=data) {
6 previous=list_pointer;
7 list_pointer=list_pointer->next;
8 }
9 return previous;

10 }

34 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The find_previous_node() Function

The find_previous_node() function is responsible for locating an
element in the list that precedes the element that has to be re-
moved. If there is no element in the list to be removed, the function
returns the address of the last element of the list. Please note the
similarity of the definition of the function to the definition of the
find_spot() function. The element is located inside the while loop.
Two pointers are used for traversing the list: the list_pointer and
the previous, which plays the same role as its counterpart in the
find_spot() function. The loop stops (refer to the line no. 5) when
the list pointer value is null or it points an element that, because
of the value of its data field, has to be removed. However, the func-
tion returns the address of the element that precedes the one to be
removed. Please observe that the expressions in the condition in the
5th line cannot change their places. Otherwise the function would
reference the data field of an element before checking if the element
exists. It could cause the program to fail. 35 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

1 void delete_middle_or_last_node(struct list_node *previous)
2 {
3 struct list_node *node = previous->next;
4 if(node) {
5 previous->next = node->next;
6 free(node);
7 }
8 }

36 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

The delete_middle_or_last_node() function, contrary to what
its name suggests, also handles the last possible case of removing an
element from a list — when there is no element to be removed. In
that case the function takes no action and the list stays the same
as it was. The function takes the address of the element preceding
the element to be removed from the list as an argument. Similarly
as in the case of previously described helper functions, there is no
need for verifying the pointer, because the find_previous_node()
function never returns null. In the 3rd line the function stores the
address of the element pointed by the previous parameter in the
locally defined node pointer. If the pointer in not empty, which is
verified in the 4th line, it means that an element exists that should
be removed from the list. It can be the last element of the list or an
element inside the list. It occurs that both cases can be handled by
the same statements.

37 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

In the 5th line the address from the next field of the element pointed
by the node pointer is assigned to the next field of the element
pointed by the previous pointer. If the former field is empty then
the element to be removed is the last element of the list and after
it is removed the element pointed by the previous pointer becomes
the last one in the list. Thanks to the assignment in the 5th line the
next field gets the null value, which is required for the last element
of the list. If however, the element pointed by the node pointer is
not the last one in the list, then performing the statement from the
5th line will unlink it from the rest of the list. In the 6th line, the
memory allocated for the element pointed by the node pointer is
freed and the function exits. The next slide contains an animation
that illustrates the operation of removing an element from the inside
of the list.

38 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

..

previous

.

node

.

next

.

next

.

next

Before performing the 5th line of the delete_middle_or_last_node()
function.

39 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

..

previous

.

node

.

next

.

next

.

next

After performing the 5th line of the delete_middle_or_last_node()
function.

39 / 57

Implementation Operation of Removing an Element from the List

Removing From the Middle and at the End of the List
The delete_middle_or_last_node() Function

..

previous

.

node

.

next

.

next

.

next

After performing the 6th line of the delete_middle_or_last_node()
function.

39 / 57

Implementation Operation of Removing an Element from the List

Removing an Element From the List — Summary

Like the add_node() function, the delete_node() function can be
implemented without defining the helper functions, but it is also
likely that its definition would be less legible. The effectiveness of
the function can be improved by defining all helper functions with
the use of the static inline keywords. Also it is possible to
implement the function in a different way than it is presented in the
lecture.

40 / 57

Implementation Operation of Displaying the Content of the List

Operation of Displaying the Content of the List

Printing of all numbers stored in the elements of the list is imple-
mented in the same way as in the case of the fifo queue, hence the
print_list() function is not described in details.

41 / 57

Implementation Operation of Displaying the Content of the List

Operation of Displaying the Content of the List
The print_list() Function

1 void print_list(struct list_node *list_pointer)
2 {
3 while(list_pointer) {
4 printf("%d ",list_pointer->data);
5 list_pointer=list_pointer->next;
6 }
7 puts("");
8 }

42 / 57

Implementation Operation of Removing the List

Operation of Removing the List

Removing the list consists of freeing the memory allocated for each
of its elements, starting from the first one. After the operation is
completed the list pointer should have the null value. The opera-
tion is implemented in the remove_list() function.

43 / 57

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Function

1 void remove_list(struct list_node **list_pointer)
2 {
3 while(*list_pointer) {
4 struct list_node *next = (*list_pointer)->next;
5 free(*list_pointer);
6 *list_pointer = next;
7 }
8 }

44 / 57

Implementation Operation of Removing the List

Operation of Removing the List
The remove_list() Function

The remove_list() function takes the address of the list pointer
as its argument. In the while loop all the elements of the list are
successively removed until the list is empty and the list pointer has
the null value. Please note, that the 4th, 5th and 6th lines of the
function are very similar to the statements in the pop() function
that was introduced in the lecture on the stack. The elements of
the list are destroyed starting from the first one and finishing with
the last one. Please notice the assignment in the 4th line. The
parentheses on the right side of the operator are necessary to force
the correct precedence of the operators — the dereference of the list
pointer has to take place before the next field of the element pointed
by this pointer can be accessed. Without the parentheses the oper-
ators could be performed in the wrong order, which is signaled as
an error by the compiler.

45 / 57

Implementation

The main() Function

In the main() function all the functions that implement the basic
operations on the list are invoked. To verify the correctness of their
behaviour such numbers are passed to the functions that all of the
following cases are checked:

adding an element at the beginning of the list,
adding an element inside the list,
adding an element at the end of the list,
removing an element from the beginning of the list,
removing an element from the middle of the list,
removing an element from the end of the list,
removing a nonexistent element from the list.

46 / 57

Implementation

The main() Function
First Part

1 int main(void)
2 {
3 list_pointer = create_list(1);
4 int i;
5 for(i=2; i<5; i++)
6 list_pointer=add_node(list_pointer,i);
7 for(i=6; i<10; i++)
8 list_pointer=add_node(list_pointer,i);
9 print_list(list_pointer);

47 / 57

Implementation

The main() Function
First Part

In the first part of the main() function the list is created. It initially
consists of a single element which stores the 1 number. Next, the
elements of the values from 2 to 4 and from 6 to 9 are added to the
list. After the elements are added, the list is printed on the screen.

48 / 57

Implementation

The main() Function
Second Part

1 list_pointer=add_node(list_pointer,0);
2 print_list(list_pointer);
3 list_pointer=add_node(list_pointer,5);
4 print_list(list_pointer);
5 list_pointer=add_node(list_pointer,7);
6 print_list(list_pointer);
7 list_pointer=add_node(list_pointer,10);
8 print_list(list_pointer);

49 / 57

Implementation

The main() Function
Second Part

In the second part of the main() function the elements of the values
0, 5, 7 and 10 are added to the list. The first one is added at the
beginning of the list, the second one inside the list, the third one
also inside the list, before an element of the same value and the last
one at the end of the list. After each addition the content of the
list is displayed on the screen, so the user can make sure that the
operations are performed correctly.

50 / 57

Implementation

The main() Function
Third Part

1 list_pointer=delete_node(list_pointer,0);
2 print_list(list_pointer);
3 list_pointer=delete_node(list_pointer,1);
4 print_list(list_pointer);
5 list_pointer=delete_node(list_pointer,1);
6 print_list(list_pointer);
7 list_pointer=delete_node(list_pointer,5);
8 print_list(list_pointer);
9 list_pointer=delete_node(list_pointer,10);

10 print_list(list_pointer);
11 remove_list(&list_pointer);
12 return 0;
13 }

51 / 57

Implementation

The main() Function
Third Part

In the third part of the main() function the elements that store
values 0 (at the beginning of the list), 1 (at the new beginning of
the list), 1 (doesn’t exist any more in the list), 5 (inside the list)
and 10 (at the end of the list) are successively removed from the
list. After each such an operation is performed the content of the
list is displayed on the screen. Finally, the list is removed with the
use of the remove_list() function and the main() function exits.

52 / 57

Applications

Applications

Lists implemented as singly liked or doubly linked lists, which will be
discussed in the future lectures, have many applications. Typically
they are used in the operating systems. The Linux kernel applies
them frequently and the Linux programmers have provided a default
implementation of a list that is used in many parts of the kernel.
The majority of the contemporary programming languages provides
predefined implementations of such data structures. In some of them
lists are implemented as a part of the language standard library (for
example: Java) or as an integral part of the language (for example:
Python).

53 / 57

Summary

Summary
Singly linked linear lists can be implemented with the use of sen-
tinels, just like the queues. In that case, when the program starts,
one or two such elements are created. Thanks to them the functions
that implement the operations of adding and removing elements of
the list don’t have to check some of the conditions. The lists can also
be implemented with the use of multidimensional arrays. The first
row of the array stores the values of the elements of the list and the
second one stores the values of the indices which correspond to the
addresses of the next elements of the list. Unfortunately, the capac-
ity of the list is limited and the operation of adding a new element is
hard to implement, because it requires coping some of the elements
of the array. Such an activity may also be required by the operation
of removing an element from the list. Both operations, however, can
be implemented in a different way, but it requires specifying, that
a special value of the index in the second row of the array indicates
a removed element of the list.

54 / 57

Summary

Summary

The removed elements can be latter used for inserting new elements
to the list. There has to be also specified a value of the index
that would be the counterpart of the null value. The singly linked
linear list can also be implemented with the use of a linear array.
All elements with the even indices would be the counterparts of
the next pointer fields. Both implementations get intricate if the
list should store the values of more complex data types. However,
this form of implementing the list is only necessary in case of older
programming languages that do not support dynamical allocation
and deallocation of the memory or in case where the program is
developed for a computer system with limited memory.

55 / 57

The End

Questions

?

56 / 57

The End

The End

Thank You For Your Attention!

57 / 57

	Singly Linked Linear List
	Implementation
	Base Type and List Pointer
	Creating a List
	Operation of Adding an Element to the List
	Operation of Removing an Element from the List
	Operation of Displaying the Content of the List
	Operation of Removing the List

	Applications
	Summary

