
.

......

Fundamentals of Programming 2
Queues and Their Applications

Arkadiusz Chrobot

Department of Computer Science

March 16, 2020

1 / 60

Outline

...1 Queues and Their Classification

...2 The fifo Queue
Implementing As Dynamically Allocated Data Structure
Implementing With the Use of Arrays

...3 Testing some of the operations on Dynamically Allocated Data
Structures

...4 Summary

2 / 60

Queues and Their Classification

Queues and Their Classification
The fifo Queue

Queues, just like the stack, are abstract data structures consisting
of linked together elements that store data. However, the elements
are managed differently than in the stack. The term queue usually
is interpreted as a fifo queue and so it is going to be used for the
most part of the lecture. The fifo stands for First In First Out.
The rule implies that elements are added to the queue at one of its
ends and removed on the other. The end where the elements are
removed is called the head or front of the queue, and the end where
the elements are added is called a tail or rear of the queue.

3 / 60

Queues and Their Classification

Queues and Their Classification
Double-ended Queue

Aside from the fifo queues there also exist double-ended queues
or deques for which the operations of adding and removing of an
element are defined for both ends. Among them the following types
are distinguished:

an input-restricted deque — the elements can be removed at
both ends, but added only at one,
an output-restricted deque — the elements can be added at both
ends, but removed only at one.

4 / 60

The fifo Queue

The fifo Queue

The rest of the lecture is about fifo queues. Those queues can be
implemented as dynamically allocated data structures or with the
use of an array. Both possibilities are presented in the lecture. In the
last part of the lecture a simple way of testing functions that perform
some of the operations on dynamically allocated data structures is
introduced. Implementations of queues are described starting with
the dynamically allocated data structures. All of them store only
int numbers.

5 / 60

The fifo Queue

The fifo Queue

Like in the case of the stack or any other abstract data structure,
the definitions of the base type and functions that implement the
basic operations are necessary for implementing a queue. At least
two operations need to be implemented: adding an element to the
queue and removing an element from the queue. They are called
enqueue and dequeue respectively. To simplify their implementation
two special pointers are used. One points to the current first element
of the queue and it is called a head and the second one points to the
current last element of the queue and it is called a tail. The first
one is used when an element is added to a queue and the second one
when an element is removed from the queue. Some programmers
call them a front and a rear respectively.

6 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure

The program that presents the implementation of the fifo queue
uses functions that manage the heap and display messages on the
screen. That’s why it includes the stdio.h and stdlib.h header
files.

7 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
Header Files

1 #include<stdio.h>
2 #include<stdlib.h>

8 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The Base Data Type of The fifo Queue

The base data type for the fifo queue is based on a structure and
its definition is the same as the definition of the stack base type,
with the exception of name. It can be modified to suite the needs of
a programmer, but it has to contain at least one pointer that allows
for liking an element of the queue with another such an element.
The definition of the queue base type is presented in the next slide.

9 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The Base Type of fifo Queue

1 struct fifo_node
2 {
3 int data;
4 struct fifo_node *next;
5 };

10 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The head and tail Pointers

As it has been mentioned before, to make the implementation of a
queue effective, two pointers are needed. One of them should point
to the current first element of the queue and the second one to the
current last element of the queue. Those pointers can be declared as
either global or local variables. However, in the presented program
they are declared as fields of a separated structure. The next slide
contains a definition of a type of the structure and a declaration of
a global variable of this type. The pointers are global therefore they
default value is zero (null) and thus the queue is initially empty.

11 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The Structure With Pointers

1 struct fifo_pointers
2 {
3 struct fifo_node *head, *tail;
4 } fifo;

12 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The Enqueue Operation

Now, that the structure with pointers and the base type of fifo
queue is defined, the functions that perform operations on the queue
can be also defined, starting with the one that enqueues a new ele-
ment. It has to satisfy the following assertions:

If the queue exists (has at least one element), the function adds
a new element at the back of it, and if the queue doesn’t exist
(is empty), the function creates and adds its first element.
If the function fails to create a new element, then the queue
stays the same as it was.
If the operation of adding a new element is successful then the
queue grows by one element or if it was not existing, it is cre-
ated.

The next slide contains a definition of a function that implements
the enqueue operation.

13 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

1 void enqueue(struct fifo_pointers *fifo, int data)
2 {
3 struct fifo_node *new_node =
4 (struct fifo_node *)malloc(sizeof(struct fifo_node));
5 if(new_node) {
6 new_node->data = data;
7 new_node->next = NULL;
8 if(fifo->head==NULL)
9 fifo->head = fifo->tail = new_node;

10 else {
11 fifo->tail->next=new_node;
12 fifo->tail=new_node;
13 }
14 } else
15 fprintf(stderr,"No new element has been created!\n");
16 }

14 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

The enqueue operation is implemented in the program in a form of a
function of the same name. The function doesn’t return any value.
If it fails to create and add a new element to the queue it only prints
a message on the screen. The state of the queue stays the same. If
the queue stays empty the behaviour of other functions that perform
operations on it is unaffected. They all check if the queue is not
empty before they perform any operation on it. The structure with
the head and tail pointers is passed to the enqueue() function by
a pointer parameter. The values of those pointers can be modified
by the function and the modifications have to be preserved when
the function terminates, thus the use of the pointer parameter is
necessary. The second parameter of the function is used for passing
the value which is to be stored in the new element of the queue.

15 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

In the lines of the function no. 3 and no. 4, a memory area is
allocated for the queue new element. After the function makes sure
that the allocation was successful (line no. 5) it initializes the fields
of the element. The null value is assigned to the next field of the
element, to indicate that the element will be the last one in the
queue. There are two cases that have to be taken into consideration
when implementing the part of the enqueue() function that adds a
new element to the tail of the queue:

...1 the element is added at the end of an existing queue,

...2 the element is added to an empty (nonexistent) queue.
They are distinguished in the line no. 8 of the function. If both
queue pointers have the value of null then the second case applies
and both pointers are assigned the address of a new element, which
becomes the first and the last element of the queue. It is illustrated
by an animation in the next slide.

16 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Creating a Queue

..

tail

.

head

. null.

new_node

The queue before the line no. 9 of the enqueue() function is performed

17 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Creating a Queue

..

tail

.

head

. null.

new_node

The queue after the line no. 9 of the enqueue() function is performed

17 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

Adding an element to the existing queue is implemented differently.
In the line no. 11 the enqueue() function uses the tail pointer to
reach the current last element of the queue and to store in its next
field the address of the new element. That’s how the new element
becomes the last one in the queue. Before exiting, the function
has to ensure the correct state of the queue, or more precisely, that
the tail pointer is still pointing to the last element of the queue.
Therefore, in the line no. 12 the function assigns the address of
the new element to the pointer. Please note, that the lines no.
11 and no. 12 are related, and cannot switch their places in the
function. On the other hand, the line no. 12 could be replaced
by the fifo->tail=fifo->tail->next; statement, but then the
function would be less legible. However, similar expressions will be
used in the future lectures, when necessary. The message from the
line no. 15 is displayed only if creating the new element fails. In
that case the queue stays as it was, before the function started. 18 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function

The next slides presents an animation that illustrates how a new
element is added to a queue consisting of a single element. The
element would be added in the same way, if the queue contained
more than one element.

19 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Adding a New Element

..

head

. null. null.

tail

.

new_node

Before the line no. 11 of the enqueue() function is performed

20 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Adding a New Element

..

head

. next. null.

tail

.

new_node

After the line no. 11 of the enqueue() function is performed

20 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() Function — Adding a New Element

..

head

. next. null.

tail

.

new_node

After the line no. 12 of the enqueue() function is performed

20 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The Dequeue Operation

The dequeue operation removes an element from the front (the be-
ginning) of the fifo queue. The operation should satisfy the follow-
ing assertions:

If the queue doesn’t exist then the state of its pointers should
not change after the operation is performed — both pointers
have to have the value of null.
If an element is removed from a queue that has only one ele-
ment, then after the operation is performed both queue pointers
must have the value of null.
If an element is removed from a queue consisting of more than
one element, then after the operation is successfully completed
the queue is reduced by one element and the pointers correctly
point to the head and tail of the queue.

An implementation of the operation in a form of a function is pre-
sented in the next slide.

21 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The dequeue() Function

1 int dequeue(struct fifo_pointers *fifo)
2 {
3 if(fifo->head) {
4 struct fifo_node *tmp = fifo->head->next;
5 int data = fifo->head->data;
6 free(fifo->head);
7 fifo->head=tmp;
8 if(tmp==NULL)
9 fifo->tail = NULL;

10 return data;
11 }
12 return -1;
13 }

22 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The dequeue() Function

Please observe, that the dequeue() function definition is very sim-
ilar to the definition of the pop() function for the stack. The
dequeue() function, just like the pop() function returns -1 if it
is called for an empty queue. The operation of removing an element
from the head of the queue is similar to the operation of removing
an element from the top of a stack. There are only two differences.
The first one is that the head and tail pointers are fields of a struc-
ture and the second one is that the tail pointer has to be assigned
the null value, after an element is removed from a queue, that con-
tained only one element. This is enforced by the assertions given in
the previous slides. The assignment is performed in the 8th and 9th
lines.

23 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The enqueue() and dequeue() Functions — Summary

The enqueue and dequeue operations are the basic ones that should
be implemented for the fifo queue. There are necessary for using
the data structure in a program. Their example implementations
are presented in the previous slides. However, they may be written
differently. For example, the dequeue() function could return no
value or a value that describes the result of the operation of removing
an element. That would require defining a separate function for
reading the value of the element at the head of the queue. The way
the functions are implemented depends on the preferences and needs
of the programmer and the problem that she or he tries to solve.

24 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
Displaying Values of Elements on the Screen

Implementing the operation of displaying all values store in the ele-
ments of the fifo queue is not mandatory, but it is quite convenient.
In the next slides are presented two function that implements such
an operation.

25 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The print_queue() Function

1 void print_queue(struct fifo_pointers fifo)
2 {
3 while(fifo.head) {
4 printf("%d ",fifo.head->data);
5 fifo.head = fifo.head->next;
6 }
7 puts("");
8 }

26 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The print_queue() Function

The structure of the queue pointers is passed by value to the func-
tion, because it is handy to use the head pointer for iterating over
the elements of the queue. That however means, that the value of
the pointer is changed inside the function and those modifications
cannot “go” outside. Passing the queue pointers structure by value
prevents such an issue. If the head pointer had a different value
after the function exits than it had before the function started, then
that would mean that the address of the fist element of the queue
has been lost. The while loop inside the print_queue() function
is performed as long as the head pointer has a value different than
null, which means as long as the queue has elements containing not
yet displayed values. The printing of the elements is performed in
the 4th line. In the 5th line the head pointer is “moved” to the next
element of the queue by storing in it the address stored in the next
field of the element that it currently points to.

27 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The print_queue() Function — The for Loop Version

1 void print_queue_with_for(struct fifo_pointers fifo)
2 {
3 for(;fifo.head;fifo.head=fifo.head->next)
4 printf("%d ",fifo.head->data);
5 puts("");
6 }

28 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
The print_queue() Function — The for Loop Version

The same operation of printing the values of elements of the fifo
queue can be implemented, in the C language, with the use of the
for loop, just as it is demonstrated in the previous slide. The head
pointer is the loop counter in the function. Please note, that the
initialization part of the loop has been omitted. The condition part
specifies that the loop is performed as long as the head pointer is not
equal null. In the increment part the address of the next element
in the queue is assigned to the head pointer. The function definition
is briefer than the previous one, but slightly less legible.

29 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
An Example of Using — The main() Function

1 int main(void)
2 {
3 int i;
4 for(i=0;i<20;i++)
5 enqueue(&fifo,i);
6 print_queue_with_for(fifo);
7 while(fifo.head)
8 printf("%d ",dequeue(&fifo));
9 puts("");

10 return 0;
11 }

30 / 60

The fifo Queue Implementing as DADS

Implementing As Dynamically Allocated Data Structure
An Example of Using — The main() Function

In the main() function of the program, all defined functions for han-
dling the fifo queue are called, except for the print_queue() func-
tion. It can be invoked in place of the print_queue_with_for()
function or just after the latter is called. In the 4th and 5th lines
the main() function adds element containing natural numbers rag-
ing from 0 to 19 to the queue and then prints the content (the
numbers) of the queue on the screen (line no. 6). Next, all the
elements of the queue are removed and their values are displayed
once more (lines no. 7 and no. 8).

31 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array

The fifo queue can be implemented with the use of an array. In
that case its capacity is limited by the number of the element in
the array, but other than that it should behave in the same way as
a dynamically allocated queue. If a new element cannot be added
then the queue is called a full queue. The implementation of a
queue based on an array is explained with the use of a program that
stores integer numbers in such a data structure. The head and tail
pointers are replaced int the queue by the fist and last indices. To
simplify the implementation of such a queue the underlining array
can be organized as a circular array, such that has no start or end.
The queue implemented with the use of a circular array is depicted
in the next slide.

32 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of Array

..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

first

.

la
st

A partially filled fifo queue

33 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array

Using circular array for implementing a fifo queue has two conse-
quences. The values of both indices are only incremented by one
regardless of the performed operation (adding or removing an ele-
ment). On the other hand a way for detecting if the queue is empty
or full has to be defined. One of the possibilities is using a separate
variable for counting the elements of the queue. The other one is
described by Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ull-
man in the book “Algorithms and Data Structures”. The presented
program is based on their solution. The full and empty queues are
depicted in the next slides.

34 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array

..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

last

.

first

A full fifo queue

35 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array

A fifo queue is full when the values of the last and first indices
differ by 2 modulo the number of the array elements. Please observe,
that according to this definition in the full queue one element of the
array remains unused, just as it is showed in the picture.

36 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array

..

7

.

6

.

5

.

4

.

3

.

2

.

1

.

0

.

last

.

fi
rs

t

An empty fifo queue

37 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array

A fifo queue is empty when the values of the last and first
indices differ by 1 modulo the number of elements of the array.

38 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The Queue Structure

1 #include<stdio.h>
2 #include<stdbool.h>
3

4 #define FIFO_SIZE 20
5

6 struct queue
7 {
8 int elements[FIFO_SIZE], first, last;
9 } fifo;

39 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The Queue Structure

The previous slide contains the beginning of the example program
that implements a queue with the use of an array. The stdlib.h file
is replaced by the stdbool.h header file, because one of the func-
tions is returning a value of the bool type and the program doesn’t
need functions for managing the heap. The fifo_size constant de-
fines the number of the elements of the array. The capacity of the
queue is smaller by one element. The array and the queue indices
are defined in the program as fields of a structure of the fifo type.
It can be stated that the structure is the queue itself.

40 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The add_one() Function

1 int add_one(int index)
2 {
3 return (index+1)%FIFO_SIZE;
4 }

41 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The add_one() Function

The add_one() function is used for incrementing the values of the
queue indices by one. Using the reminder operator ensures that the
values of each of the indices stay within an acceptable range. The
function takes as an argument the current value of an index and
returns the next one.

42 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The make_empty() Function

1 void make_empty(struct queue *fifo)
2 {
3 fifo->first = 0;
4 fifo->last = FIFO_SIZE-1;
5 }

43 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The make_empty() Function

The make_empty() initializes the queue by “reseting” its indices.
After the function is performed the first index is indicating the
first element of the array and the last index indicates the last one.

44 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The is_empty() Function

1 bool is_empty(struct queue fifo)
2 {
3 return add_one(fifo.last)==fifo.first;
4 }

45 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The is_empty() Function

The is_empty() function returns the true value when there is no
elements in the queue or the false value if there is at least one
element in the queue. The function verifies if the value of the last
index incremented with the use of the add_one() function is equal
to the value of the first index1. If so, then the queue is empty.

1Please refer to the corresponding figure in the previous slides.
46 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The first_one() Function

1 int first_one(struct queue fifo)
2 {
3 if(is_empty(fifo)==true)
4 return -1;
5 else
6 return fifo.elements[fifo.first];
7 }

47 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The first_one() Function

In this program, the dequeue operation only removes the first ele-
ment from the queue. The first_one() function returns the value
of such an element. This element is indicated by the fist index. If
the queue is empty, the function returns the -1 value.

48 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The enqueue() Function

1 void enqueue(struct queue *fifo, int data)
2 {
3

4 if(add_one(add_one(fifo->last))!=fifo->first)
5 {
6 fifo->last = add_one(fifo->last);
7 fifo->elements[fifo->last] = data;
8 } else
9 fprintf(stderr, "The queue is full!\n");

10 }

49 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The enqueue() Function

The enqueue() function adds a new element and stores in it the
value passed by the data parameter. Before it happens the function
makes sure that the queue is not full. It accomplishes the task
by applying the add_one() function to the last index twice and
comparing the result with the value of the first index. If the
values are equal then the queue is full and adding a new element
is impossible2. In that case the function displays on the screen a
message informing the user that the queue is full. If the queue is not
full the function first increments the value of the last index with
the use of the add_one() function and then it assigns the value of
the data parameter to the element of the array indicated by the new
value of the last index (lines no. 6 and no. 7).

2Please refer to the corresponding figure in the previous slides.
50 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The dequeue() Function

1 void dequeue(struct queue *fifo)
2 {
3 if(is_empty(*fifo))
4 fprintf(stderr, "The queue is empty!\n");
5 else
6 fifo->first = add_one(fifo->first);
7 }

51 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The dequeue() Function

The dequeue() function in this implementation of the queue returns
nothing, just removes the first element. However, first it checks if
the queue is empty. If so, the function displays a corresponding
message on the screen and exits. Otherwise it removes the element
by incrementing the value of the first index with the use of the
add_one() function (line no. 6).

52 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The main() Function

1 int main(void)
2 {
3 int i;
4 make_empty(&fifo);
5 for(i=0;i<FIFO_SIZE-1;i++)
6 enqueue(&fifo,i);
7 while(!is_empty(fifo)) {
8 printf("%d ",first_one(fifo));
9 dequeue(&fifo);

10 }
11 return 0;
12 }

53 / 60

The fifo Queue Implementing With the Use of Arrays

The fifo Queue
Implementing With the Use of an Array — The main() Function

In the main() function of the program the queue is first initialized
with the use of the make_empty() function and then in the for
loop elements are added to the queue by calling the enqueue()
function. The queue can have at most 19 of them. After the for
loop terminates the while loop is performed in which the values
of the queue elements are read with the use of the first_one()
function and then the elements are removed with the use of the
dequeue() function.
The array based implementations of the fifo queue were used in
programming languages that haven’t supported dynamic allocation
of the memory. Nowadays they are applied in computer systems
with limited size of the ram, such as microcontrollers. The keyboard
buffer is also implemented in such a way. It is a place in memory
where the keyboard controller stores data about keystrokes that are
latter used by the cpu. It is an example of a limited capacity queue
managed by a hardware. 54 / 60

Testing some of operations on DADS

Testing some of the operations on Dynamically
Allocated Data Structures

Using dynamically allocated variables and data structures is quite
a difficult task. It is relatively easy to make mistakes implement-
ing operations for the stack, queue or any other similar data struc-
ture. Locating and removing such defects is a challenging task.
There is however an easy way for testing functions, such as the
print_queue() function, that implement operations on dynami-
cally allocated data structures which don’t involve allocating and
deallocating memory. It only requires to create a queue or other
data structure from elements which are statically allocated global
or local variables. A queue created in such a manner can be applied
for checking the behaviour of those functions. To some extend the
same method can also be applied for testing functions that imple-
ment operations requiring allocating and deallocating memory. In
the next slide a function is presented that uses the described method
to test the behaviour of print_queue() function.

55 / 60

Testing some of operations on DADS

Testing some of the operations on Dynamically
Allocated Data Structures

1 void print_queue_test(struct fifo_pointers *fifo)
2 {
3 struct fifo_node front, middle, rear;
4

5 front.data = 1;
6 front.next = &middle;
7 middle.data = 2;
8 middle.next = &rear;
9 rear.data = 3;

10 rear.next = NULL;
11

12 fifo->head = &front;
13 fifo->tail = &rear;
14 print_queue(*fifo);
15 fifo->head = fifo->tail = NULL;
16 } 56 / 60

Testing some of operations on DADS

Testing some of the operations on Dynamically
Allocated Data Structures

In the print_queue_test() function are defined three structure,
named front, middle and rear, of the struct fifo_node type.
Those variables are used for creating a queue consisting of three el-
ements (lines no. 3–9). To the data field of each of the structures
is assigned a number. The next field of the first element gets the
address of the second element. The next field of the second element
gets the address of the third element. Finally, the next field of the
third element gets the null value. The queue pointers are initial-
ized in the 12th and 13th lines. The addresses of the first and the
last element of the queue are assigned to them. The created queue
can be used by the programmer to test the print_queue() func-
tion without worrying about damaging the integrity of the queue or
causing memory leakages. In the 15th line the function zeros out
the pointers of the queue, which means that the queue ceases to
exist.

57 / 60

Summary

Summary

Queues, which can be implemented either as dynamically allocated
data structures or by using arrays, have many applications. Operat-
ing systems use them for scheduling threads and processes, for im-
plementing special variables called semaphores, for managing input-
output operations and for many other purposes. Also other pro-
grams, like compilers or concurrent programs utilizes those data
structures. The queues are also implemented in hardware, like the
aforementioned keyboard buffer.
Often the programmers create a single element of the queue that
exist throughout the whole life cycle of the program, to simplify
functions that implement operations on a queue. It is a dummy
element, that doesn’t store any useful data and it is called a sentinel
node. The queue that uses such an element is called a queue with a
sentinel. Such a solution can also be applied for the stack.

58 / 60

The End

Questions

?

59 / 60

The End

The End

Thank You For Your Attention!

60 / 60

	Queues and Their Classification
	The fifo Queue
	Implementing As Dynamically Allocated Data Structure
	Implementing With the Use of Arrays

	Testing some of the operations on Dynamically Allocated Data Structures
	Summary

