
.

......

Fundamentals of Programming 2
Stack And Its Applications

Arkadiusz Chrobot

Department of Computer Science

March 2, 2020

1 / 73

Outline

...1 Abstract Data Structures

...2 Stack — Introduction

...3 Stack — Implementation

...4 Memory Leaks

...5 Examples of Stack Applications

...6 Summary

2 / 73

Abstract Data Structures

Abstract Data Structures
Thanks to the functions managing the heap, which were introduced
in the previous lecture, it is possible to create dynamically allocated
variables. However, there are many more possibilities offered by
these functions. They allow the programmers to create the whole
data structures called dynamically allocated data structures. The
main advantage of such data structures is that their size doesn’t
have to be known before the program runs. They are created, as
their name suggests, dynamically when the program is performed
and their size is limited only by the available space in the heap.
The abstract data structures are the majority of dynamically allo-
cated data structures. Those structures usually are not a part of
the programming language standard, but can be constructed with
the help of elements provided by the language. To create such a
structure, first its abstract data type has to be defined. The type
describes not only the data that the structure can store but also the
operations that can be applied to it. The stack is the first such a
data structure that will be introduced in this course. 3 / 73

Stack — Introduction

Stack — Introduction

A stack in computer science is an abstract data structure, that stores
data according to the Last In First Out rule, or lifo for short. It
can be implemented in several different forms. One of them is an
abstract data structures in which elements storing data are linked
together with the use of pointers. The stack is also a special case of
another data structures called queues, which in turn a special case
of lists. All these structures will be successively introduced in the
lectures. To better understand what is a stack, let’s assume, that
a list is a collection of connected elements with a beginning and an
end. A stack is a kind of list in which operations of adding and
removing elements can be applied to only one of its ends. Usually
the stack is depicted as a vertical list which one end is called a top.

4 / 73

Stack — Implementation

Stack — Implementation

The stack is an abstract data structures, so an abstract data type
for the stack has to be created. The data type ought to define the
type of information stored in the stack and also the operations that
can be carried out on this structure. The task has to be completed
with the use of elements provided by the C language. Its first part
can be accomplished with a structure data type and the second with
the functions. For the sake of simplicity let’s assume, that the stack
should store, in its elements, numbers of the int type. A stack
storing strings of characters also will be presented in the lecture.

5 / 73

Stack — Implementation

Stack — Implementation
Stack Base Type

struct stack_node {
int data;
struct stack_node *next;

};

6 / 73

Stack — Implementation

Stack — Implementation

The previous slide contains a definition of an example structure that
describes the type of a single stack element which is also called the
stack base type. It contains two fields. The first one stores data. In
many cases there can be a larger number of such fields and they can
store more complex data. In the example there is only one such a
field of the int type and named data. Second field in the example
base type is a pointer. There are stacks with elements containing
more than one pointer field. However, in any dynamically allocated
stack, at least one such a pointer field in each element should exist.
Please notice the type of the pointer field. It is the same as the
type of the structure that contains it. It means that the structure
is recursive and that the pointer can point to another structure of
the same type as the one in which it is contained. In other words,
thanks to this pointer, the elements of stack can be linked together.

7 / 73

Stack — Implementation

Stack — Implementation

Elements of the stack are linked together with the use of pointer
fields. However, to perform an operation on the stack, the program
has to know where is the top of the stack. Hence, a separate pointer,
local or global, is needed for storing the address of the top of the
stack. The pointer can have any name, but usually it is described
as a stack pointer.
The only thing that is now missing in the definition of abstract type
for the stack are the operations. The most basic of them are: adding
a new element to the stack, which is called push and removing an
element from the stack, which is named pop. Both those operations
are performed on the top of the stack. An optional operation, which
is sometimes defined, is retrieving the value of the stack top element
and it is called peek. All three operations are defined in the lecture.

8 / 73

Stack — Implementation

Stack — Implementation
The push() Function

The push operation is implemented in a form of push() function.
The behaviour of the function should satisfy the following conditions
(assertions):

...1 Before the function is performed the stack pointer has to point
the top element of the stack or be an empty pointer — in the
latter case the stack is empty (or nonexistent).

...2 The function as a result should return an address that either
will be the same as the one stored in the stack pointer — in
that case adding a new element to the stack has failed — or it
will be an address of a new element on the top of the stack —
in that case the operation has been successful.

9 / 73

Stack — Implementation

Stack — Implementation
The push() Function

1 struct stack_node *push(struct stack_node *top, int number)
2 {
3 struct stack_node *new_node = (struct stack_node *)
4 malloc(sizeof(struct stack_node));
5 if(new_node!=NULL) {
6 new_node->data = number;
7 new_node->next = top;
8 top = new_node;
9 }

10 return top;
11 }

Warning! The line numbers are not a part of the source code. They
are introduced to make describing the function code easier.

10 / 73

Stack — Implementation

Stack — Implementation
The push() Function

The push() function takes two arguments which are passed by its
parameters. The first one is the stack pointer and the second is a
number which is to be stored in a new element of the stack. First,
the function allocates memory for the new element (lines no. 3 and
4). What happens next depends on the result of the allocation. If it
fails then the new_node pointer value will be null and the function
will return the unchanged value of the top pointer. Otherwise, the
new_node pointer will store the address of the new element. The
number passed by the number parameter will be stored in the data
field of the new element (line no. 6). In the 7th line, the address
currently stored in the top pointer in assigned to the next filed of
the new element. Thus, the new element is linked to the rest of the
stack and becomes a new top of the stack. Therefore its address is
assigned to the top pointer in the 8th line. After that the function
returns the address of a new top element of the stack and terminates.

11 / 73

Stack — Implementation

Stack — Implementation
The push() Function

The push() can be implemented in many was. Aside from the pre-
sented one, definitions exist in which the stack pointer is passed by a
pointer to pointer parameter which is modified in the function body.
Such a solution is discussed in more details in the pop() function
description.
The next slides illustrate successful adding of a new element to the
existing stack which has two elements. Please note, that the next
field of the new element is initially marked in a red color. It means
that it is an incorrect pointer (a wild pointer).

12 / 73

Stack — Implementation

Stack — Implementation
The push() Function

..

new_node

.

data

.

next

.

top

.

data

.

next

.

data

.

null

Before the 7th line of the push() function is performed.

13 / 73

Stack — Implementation

Stack — Implementation
The push() Function

..

new_node

.

data

.

next

.

top

.

data

.

next

.

data

.

null

Before the 8th line of the push() function is performed.

13 / 73

Stack — Implementation

Stack — Implementation
The push() Function

..

new_node

.

data

.

next

.

top

.

data

.

next

.

data

.

null

Before the 9th line of the push() function is performed.

13 / 73

Stack — Implementation

Stack — Implementation
The push() Function

Please note the value of the next field in the bottom element of the
stack. It is a null value. It means that the element which contains
such a field is the last element of the stack. There are no other stack
elements behind it. Let’s find out if the push() function assures that
the next field in the bottom element of the stack always gets the
null value. It shows up, that it happens only when the function is
given a stack pointer with the null value when it is called for the
first time. In such a case the null value is assigned to the next
field of the first and only element of the stack. However, if in such
a case an incorrect pointer is passed to the function, then its value
will be assigned to the next field. It is a dangerous situation from
the program point of view, because it will be unable to locate the
end of the stack. Thus, the programmers should always take care
of passing an empty stack pointer to the push() function when it
is creating a stack, i.e. when it is invoked for the first time in the
program. This is especially important in case of local stack pointers.14 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

The pop operation is implemented in the form of the pop() function.
Similarly as in case of the push() function the behaviour of the
pop() function should satisfy the following assertions:

...1 Before the function is performed the stack pointer should point
to the top element of an existing stack, or be an empty pointer.

...2 After the function is performed, the stack pointer should point
to the top element of the existing stack, which is one element
shorter, or be an empty pointer.

15 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

1 int pop(struct stack_node **top)
2 {
3 int result = -1;
4 if(*top) {
5 result = (*top)->data;
6 struct stack_node *tmp = (*top)->next;
7 free(*top);
8 *top = tmp;
9 }

10 return result;
11 }

16 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

The pop() function has only one parameter which is a pointer to
a pointer or double pointer1. Using such a parameter is necessary
because the function needs to modify the stack pointer and it is
not possible to return its new value, because the pop() function
also needs to return the value of data field of the removed stack
element. In this case using the pointer to a pointer as a parameter
is the best option. By this parameter the address of a stack pointer
is passed to the function. The next slide illustrates how the pointer
to pointer works.

1The latter name is sometimes confusing, because it can also mean a pointer
of the double type.

17 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

..

&pointer;

.

int **double_pointer;

.

int *pointer;

.

int variable;

18 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

The previous slide shows that the pointer to a pointer (double_pointer)
can point to a pointer (pointer) which in turn points to a variable
(variable). The variable can be statically or dynamically allocated.
To access the value of the variable variable using the pointer to
pointer the dereference operator have to be applied twice (like this:
**double_pointer). If the operator is applied only once, then the
value of the pointer pointer can be accessed.

19 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

The pop() function has a local variable (result) of the int type
which initial value is set to -1. If the stack is empty then the
function will return such a value and terminate. The state of the
stack (empty or existing) is verified in the 4th line of the function.
The *top condition is a shorter form of the *top!=NULL expression.
If it’s true the function assigns the value of the current top element
of the stack to the result variable (line no. 5) and stores the address
of a next element in the tmp pointer (line no. 6). The address is
taken from the next field of the stack current top element. Then
the top element is removed (line no. 7). Now, the stack pointer has
an incorrect value — it doesn’t point to the top of the stack. To fix
it, in the 8th line the value of tmp pointer is assigned to the stack
pointer. Next, the function returns the value of the reslut variable
and terminates.

20 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

Please observe, that the pop() function removes correctly also the
last (the bottom) element of the stack. Its next pointer field has a
value of null and such a value is assigned to the tmp when the 6th
line of the function is applied to a stack with one and only element.
After the 8th line is performed also the stack pointer gets such a
value. This is an expected result, since the stack should become
empty after its only element is removed.
The next slides illustrate the behaviour of the pop() function when
it removes a top element from a stack that initially has three of
them. Contrary to what the slide suggests the content of the re-
moved element doesn’t vanish after the free() function is called,
nor the pointer that points to it becomes empty. Nonetheless the
element should not be accessed any more. Also the pointer should
not be used until a new address is stored in it. The reasons for such
restrictions were explained in the previous lecture.

21 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

..

*top

.

data

.

next

.

tmp

.

data

.

next

.

data

.

null

After the 6th line of the pop() function is performed.

22 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

..

*top

.

data

.

next

.

tmp

.

data

.

next

.

data

.

null

After the 7th line of the pop() function is performed.

22 / 73

Stack — Implementation

Stack — Implementation
The pop() Function

..

*top

.

tmp

.

data

.

next

.

data

.

null

After the 8th line of the pop() function is performed.

22 / 73

Stack — Implementation

Stack — Implementation
The peek() Function — Optional

1 int peek(struct stack_node *top)
2 {
3 if(top)
4 return top->data;
5 else {
6 fprintf(stderr,"The stack is empty.\n");
7 return -1;
8 }
9 }

23 / 73

Stack — Implementation

Stack — Implementation
The peek() Function — Optional

The peek operation is optional. It doesn’t have to be implemented
in every stack implementation. Nonetheless it is presented in this
lecture in the form of a peek() function. Its definition in relatively
simple. The stack pointer is passed to the function with the use of
its parameter. If it is not empty (the condition top is shorter form
of the expression top!=NULL), then the function returns the value
stored in the top element of the stack (or the value of the element,
for short). Otherwise, it prints a message on the screen informing
the user that the stack is empty and returns the same value as the
pop() function in the same case.

24 / 73

Stack — Implementation

Stack — Implementation
Example Program

All elements necessary to use a stack are now implemented. The
next slides present a simple program, that uses such a data structure.
It generates subsequent natural numbers and stores them on the
stack, then it gets them from the stack and displays on the screen.
Aside from the header files the code of the program contains the
functions that are defined in this lecture and the main() function.
The latter function is the only one that needs to be described. Such
a description is given in the slide that follows the slide with the
main() function definition.

25 / 73

Stack — Implementation

Stack — Implementation
Example Program

#include<stdio.h>
#include<stdlib.h>
#include<time.h>

struct stack_node {
int data;
struct stack_node *next;

};

26 / 73

Stack — Implementation

Stack — Implementation
Example Program

struct stack_node *push(struct stack_node *top, int number)
{

struct stack_node *new_node = (struct stack_node *)
malloc(sizeof(struct stack_node));

if(new_node!=NULL) {
new_node->data = number;
new_node->next = top;
top = new_node;

}
return top;

}

27 / 73

Stack — Implementation

Stack — Implementation
Example Program

int pop(struct stack_node **top)
{

int result = -1;
if(*top) {

result = (*top)->data;
struct stack_node *tmp = (*top)->next;
free(*top);
*top = tmp;

}
return result;

}

28 / 73

Stack — Implementation

Stack — Implementation
Example Program

int peek(struct stack_node *top)
{

if(top)
return top->data;

else {
fprintf(stderr,"The stack is empty.\n");
return -1;

}
}

29 / 73

Stack — Implementation

Stack — Implementation
Example Program

int main(void)
{

struct stack_node *top = NULL;
srand(time(0));
int i;
for(i=1; i<6+rand()%5; i++)

top=push(top,i);
printf("The value of the stack top: %d\n",peek(top));
while(top)

printf("%d ",pop(&top));
puts("");
return 0;

}

30 / 73

Stack — Implementation

Stack — Implementation
Example Program

The stack pointer is declared as a local variable of the main() func-
tion called top. Initially the stack is empty. In the for loop the
push() function is called which adds elements to the stack. The
values of the elements are defined by the loop counter (the i vari-
able). The initial value of the counter is always 1, but the final
value is generated randomly and is ranging from 6 to 10. Before
the program runs it is hard to predict how many numbers will be
stored in the stack. After the loop terminates the program displays
the value of the stack top element on the screen. Next, the numbers
are removed from the stack and printed on the screen in the while
loop. The loop terminates when the stack is empty. Its condition
is equivalent to the top!=NULL expression. The displayed numbers
expose an important property of the stack: elements of the stack
are removed in reverse order to the one in which they were added.

31 / 73

Memory Leaks

Memory Leaks
The implementations of dynamically allocated data structures are prone
to serious errors. Incorrectly linked elements of a stack or similar structure
are one of the examples. Let’s assume that some overzealous programmer
decides to zero out the top parameter at the beginning of the push()
function. Such a mistake causes lack of connections between elements of
the stack. Moreover, aside from the last element, non other is pointed by
any pointer. Those elements cannot be deallocated. The areas of the heap
that are allocated to the elements are lost until the program finishes. In
the Computer Science jargon such a mistake is called a memory leak. In
the worst case it can lead to exhaustion of the space in the heap. The
first defence against memory leaks is to avoid them by carefully analysing
implementations of all operations performed on the data structure. There
exist also software tools like debuggers and dedicated libraries that make
detecting of such errors easier. Unfortunately, they are not part of the
C language standard, because their internal working depends on the used
computer and operating system.

32 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

The stack is quite commonly used data structure. As a second
example of its application a program is presented that converts a
binary number to a decimal number. Using a stack implemented as
a dynamically allocated data structure to this end is a suboptimal
solution, but it is just for demonstrating the applications of the
stack. In the next lecture a better solution of the problem will be
presented. In the program the getch() function from the curses
library is used to allow the program to read the binary number
from the keyboard bit by bit. Each of the bits is stored in separated
element of the stack. Hence, the least significant bit of the number
is stored in the top element of the stack and the most significant one
in the bottom element. Using the curses library requires to include
the curses.h and local.h header files in the program.

33 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

#include<stdlib.h>
#include<curses.h>
#include<locale.h>

struct stack_node {
int data;
struct stack_node *next;

};

34 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

struct stack_node *push(struct stack_node *top, int number)
{

struct stack_node *new_node = (struct stack_node *)
malloc(sizeof(struct stack_node));

if(new_node!=NULL) {
new_node->data = number;
new_node->next = top;
top = new_node;

}
return top;

}

35 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

int pop(struct stack_node **top)
{

int result = -1;
if(*top) {

result = (*top)->data;
struct stack_node *tmp = (*top)->next;
free(*top);
*top = tmp;

}
return result;

}

36 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

void put_binary_on_stack(struct stack_node **top)
{

int input = 0;
do {

input = getch();
if(input=='0'||input=='1')

*top=push(*top,input-'0');
} while(input=='0'||input=='1');

}

37 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

The previous slides contains definitions of the push() and pop()
functions which have been already discussed, so no new description
of them is given. The last slide shows the definition of a function
that reads successive characters entered by the user with the key-
board. If those characters are the 0 and 1 digits then it stores them
in the stack. The activity is repeated until the user presses a key
representing any other character. The function has only one param-
eter, which is a pointer to a pointer. By this parameter the stack
pointer (initially empty) is passed to the function. The pointer is
modified in the function. The characters are read from the keyboard
in the do…while loop which terminates after a character is entered
which is not a binary digit. Each bit is stored in a separate stack
element. Please notice the push() function invocation. The value it
returns is stored in the dereferenced top pointer which is also passed
in the same form to the function as its first argument. The second
argument is the input − '0' expression. 38 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

Because the value of the bit is stored in the input variable in a form
of the ascii code it has to be converted to a digit. It is accomplished
by subtracting from the value the ascii code of the 0 character.

39 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

int convert_binary_to_decimal(struct stack_node **top)
{

int result = 0, base = 1;
while(*top) {

int digit = pop(top);
result += digit * base;
base *= 2;

}
return result;

}

40 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

The actual conversion is performed by a function which definition
is presented in the previous slide. The stack pointer is modified by
the pop() function invoked in the described function. Hence, the
latter function has a parameter which is a pointer to a pointer. The
result of the conversion is stored in the local variable named result.
Each bit removed from the stack, starting with the least significant,
has to be multiplied by a corresponding base (the value of the base
variable) which is a power of two (20 = 1, 21 = 2, 22 = 4, etc.).
Hence, the value of the base variable is multiplied by 2 in each of
the while loop iterations. The result of multiplying the removed
bit by the corresponding base is added to the sum of such products
calculated for the less significant bits. The loop terminates when the
stack is empty. Next, the function returns the value of the result
variable and terminates.

41 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

int main(void)
{

if(setlocale(LC_ALL,"")==NULL) {
fprintf(stderr,"Language settings initialization\
exception!\n");
return -1;

}
if(!initscr()) {

fprintf(stderr,"The curses library initialization\
exception!\n");
return -1;

}

42 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

The previous slide presents the beginning of the main() function
which contains the code that initializes the language settings and
the curses library.

43 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

printw("Please enter a binary number terminated with any\
character:\n");
(void)refresh();
struct stack_node *top = NULL;
put_binary_on_stack(&top);

44 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

In the part of main() function, presented in the previous slide, the
message to the user informing her or him what he or she has to do is
displayed on the screen and the put_binary_on_stack() function
is invoked that creates a stack and stores in it the bits of binary
number entered by the user.

45 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

printw("The value of the binary number in decimal is: %d.\n",
convert_binary_to_decimal(&top));

(void)refresh();
getch();
if(endwin()==ERR) {

fprintf(stderr,"The endwin() function exception!\n");
return -1;

}
return 0;

}

46 / 73

Examples of Stack Applications

Stack — Applications
Conversion From Binary To Decimal

In the last part of the main() function, presented on the previ-
ous slide, the convert_binary_to_decimal() function is invoked,
which converts the binary number to the decimal number. The ob-
tained value is displayed on the screen and the program waits for
the user to press any key. After the user does it, the curses library
is finalized and the program finishes. Please note, that using the
stack implemented as a dynamically allocated structure allows the
program to convert a relatively big binary numbers. The limit is
maximum number that can be stored in the int type variable, which
stores the result of the conversion and the limit of the heap size.

47 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The stack is used for evaluating arithmetic expressions written in
the Reversed Polish Notation (RPN) also called the postfix notation.
The notation was proposed by an Australian computer scientist and
philosopher Charles Hamblin and it is based on the Polish Notation
(PN) also called the prefix notation proposed by Polish mathemati-
cian and philosopher Jan Łukasiewicz. Both notations do not re-
quire any parentheses to define the precedence of binary operators
in any possible expression. In the PN the operators precede the
arguments and in the RPN they follow the arguments. The next
slide presents several expressions written in the traditional (infix)
notation and in the RPN.

48 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

2 + 2 Ñ 2 2 +
(5 − 2) ∗ (4 + 1) Ñ 5 2 − 4 1 + ∗
(3 + 2) ∗ 7 Ñ 3 2 + 7 ∗
3 + 2 ∗ 7 Ñ 2 7 ∗ 3 +

49 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

5

.

2

.

5

.

-

.

5

.

4

.

5

.

1

.

5

.

+

.

5

.

*

.

5

.

=

.

5

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

5

.

2

.

2

.

5

.

2

.

-

.

5

.

2

.

4

.

5

.

2

.

1

.

5

.

2

.

+

.

5

.

2

.

*

.

5

.

2

.

=

.

5

.

2

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

3

.

2

.

3

.

-

.

3

.

4

.

3

.

1

.

3

.

+

.

3

.

*

.

3

.

=

.

3

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

3

.

4

.

2

.

3

.

4

.

-

.

3

.

4

.

4

.

3

.

4

.

1

.

3

.

4

.

+

.

3

.

4

.

*

.

3

.

4

.

=

.

3

.

4

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

3

.

4

.

1

.

2

.

3

.

4

.

1

.

-

.

3

.

4

.

1

.

4

.

3

.

4

.

1

.

1

.

3

.

4

.

1

.

+

.

3

.

4

.

1

.

*

.

3

.

4

.

1

.

=

.

3

.

4

.

1

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

3

.

5

.

2

.

3

.

5

.

-

.

3

.

5

.

4

.

3

.

5

.

1

.

3

.

5

.

+

.

3

.

5

.

*

.

3

.

5

.

=

.

3

.

5

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

15

.

2

.

15

.

-

.

15

.

4

.

15

.

1

.

15

.

+

.

15

.

*

.

15

.

=

.

15

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The animation shows how a value of an RPN expression can be
evaluated with the use of the stack.

..

5

.

result=15

.

2

.

result=15

.

-

.

result=15

.

4

.

result=15

.

1

.

result=15

.

+

.

result=15

.

*

.

result=15

.

=

.

result=15

50 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

As it can be observed in the animation from the previous slide,
the RPN expressions are read from the left to the right side. If a
symbol is met that is a number, then it is added to the stack, but if
it is an operator, then its arguments are removed from the stack (if
the RPN expression is correct, then a proper number of arguments
is already stored on the stack), the operation is carried out and its
result is stored back in the stack. The example program implements
an evaluation of very crude RPN expressions, in particular:

...1 the RPN expressions consist only of single-digit natural num-
bers and three types of operators: adding, multiplying and sub-
tracting,

...2 the RPN expressions do not contain any whitespaces,

...3 the = symbol terminates every RPN expression and informs the
program to start evaluating it,

...4 the program doesn’t check the correctness of the RPN expres-
sion — it assumes that the expression is correct. 51 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The beginning of the program is the same as in the program that
converts binary number to decimal — the described program also
uses the curses library and the push() and pop() functions.

52 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

#include<stdlib.h>
#include<curses.h>
#include<locale.h>

struct stack_node {
int data;
struct stack_node *next;

};

53 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

struct stack_node *push(struct stack_node *top, int number)
{

struct stack_node *new_node = (struct stack_node *)
malloc(sizeof(struct stack_node));

if(new_node!=NULL) {
new_node->data = number;
new_node->next = top;
top = new_node;

}
return top;

}

54 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

int pop(struct stack_node **top)
{

int result = -1;
if(*top) {

result = (*top)->data;
struct stack_node *tmp = (*top)->next;
free(*top);
*top = tmp;

}
return result;

}

55 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

int calculate_rpn_expression(void)
{

int input = 0;
struct stack_node *top = NULL;
do {

input = getch();
int first_argument=0, second_argument=0, result=0;
switch(input) {
case '+':

result = pop(&top) + pop(&top);
top = push(top,result);
break;

case '-':
first_argument = pop(&top);
second_argument = pop(&top);
top = push(top,second_argument - first_argument);
break;

56 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

case '*':
result = pop(&top)*pop(&top);
top = push(top,result);
break;

default:
if(input>='0'&&input<='9')

top=push(top,input-'0');
}

} while(input!='=');

return pop(&top);
}

57 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

The parameterless calculate_rpn_expression() function presented
in the two previous slides reads in the do…while loop subsequent
characters, entered by user with the use of the keyboard, which be-
long to the RPN expression and recognizes them. The recognition of
expressions in Computer Science is called parsing. If the character
from the keyboard is a digit, then the program stores its numeric
value in the stack. However, it the characters is an operator then
the function removes two of its arguments from the stack2, carries
out the recognized operation and stores the result back in the stack.
The loop terminates when the “equals” symbol is recognized. After
that the function returns the only value that is stored in the stack
and also terminates. The stack should now be empty.

2Be careful with the order of the arguments for the subtraction operator!
58 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

int main(void)
{

if(setlocale(LC_ALL,"")==NULL) {
fprintf(stderr,"Language settings initialization exception!\n");
return -1;

}
if(!initscr()) {

fprintf(stderr,"The curses library initialization exception!\n");
return -1;

}
printw("Please enter an RPN expression:\n");
(void)refresh();
printw("\nThe result is: %d.\n",calculate_rpn_expression());
(void)refresh();
getch();
if(endwin()==ERR) {

fprintf(stderr,"The endwin() function exception!\n");
return -1;

}
return 0;

}
59 / 73

Examples of Stack Applications

Stack — Applications
Evaluating RPN Expressions

In the program’s main() function, aside from the functions that ini-
tialize and finalize the curses library and change the language set-
tings, also the calculate_rpn_expression() function is invoked.
It returns the value of the RPN expression as its result. The length
of the expression is limited only by the size of the available free
memory in the heap. It is due to the use of a stack in a form of a
dynamically allocated data structure. The value of the expression
has to fit in the range of the int data type.

60 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

The last example shows how to use the stack for storing strings of
characters. It is assumed that the number of the characters in a
single string is limited to 100. The program doesn’t use the curses
library. The strings are passed to the program as its arguments. In
the program aside from the stdio.h and stdlib.h header files also
the header file associated with string processing is included.

61 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

typedef struct stack_node {
char arg[100];
struct stack_node *next;

} node;

62 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

In the program the declaration of the first field is modified so it can
store string of at most 100 characters. Also its name is changed. The
typedef keyword is applied in order to avoid repeating the whole
specification of the pointer type in the definitions of functions. It’s
a convenient albeit less legible solution.

63 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

node *push(node *top, char *str)
{

node *new_node = NULL;
new_node = (node*)malloc(sizeof(node));
if(new_node==NULL) {

fprintf(stderr,"A memory allocation exception!\n");
return top;

}
strncpy(new_node->arg,str,100);
new_node->next=top;
return new_node;

}

64 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

The push() function is defined in a similar fashion as in the pre-
viously presented programs, but as a second argument it takes a
pointer to a string. The string is copied with the use of strncpy()
function to the new element of the stack. Please note, that in case
of the memory allocation failure, the function first displays a mes-
sage and only then it returns the address of the original stack top
element. Also returning of the new element address is implemented
in a little more compact manner — after the new element is linked
to the rest of the stack its address is immediately returned by the
function. The address should be assigned to the stack pointer in the
place in code where the function is invoked.

65 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

node *pop(node **top)
{

node *next = NULL, *old_top = NULL;
if(*top!=NULL) {

next=(*top)->next;
(*top)->next = NULL;
old_top = *top;
*top = next;

}
return old_top;

}

66 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

The pop() function presented in the previous slide doesn’t free the
memory allocated to the stack top element, but it only disconnects
the element from the rest of the stack, assigns the null value to
its next pointer field and returns its address. The stack pointer is
passed to the function by the pointer to a pointer parameter. Inside
the function the stack pointer is modified, so after the current stack
top element is unlinked from the rest of the stack, the address of
the element that followed it in the stack is stored in that pointer.

67 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

int main(int argc, char **argv)
{

node *top = NULL;
int i;
for(i=0; i<argc; i++)

top = push(top,argv[i]);
while(top) {

node *tmp = pop(&top);
printf("%s\n",tmp->arg);
free(tmp);
tmp=NULL;

}
return 0;

}
68 / 73

Examples of Stack Applications

Stack — Applications
Stack of Strings

In the main() function the program arguments are stored in the
stack inside the for loop. Because the argument stored in the first
element of the argv array always exists — it is the full path to the
program executable file, then the program always displays at least
one message on the screen. Elements of the stack are removed in
the while loop. Please observe, that they are deallocated one by
one, outside the pop() function.

69 / 73

Summary

Summary

The stack has many more applications than it is presented in the
lecture. The compilers uses it to evaluate the values of arithmetical
expressions. The algorithm for converting those expressions from
the infix to the postfix notation also uses a stack, but this time the
operators and parentheses, instead of the numbers are stored there.
The author of this algorithm is Edsgar Dijkstra and it is called a
shunting-yard algorithm. It won’t be however discussed in details
in the lecture. The operating systems use the stack for managing
processes and resources. User applications, such as text editors use
the stack for implementing the “undo” operation.

70 / 73

Summary

Summary

The stack can be implemented with the use of a “regular”, i.e. stat-
ically allocated array. However, its size is that case is limited by
the size of the array. As a stack pointer the index of the array can
be used. Adding an element to the stack involves incrementing the
value of the index by one and storing the data in the element of the
array designated by the index. Removing an element from the stack
consists of reading the data from the array element designated by
the index and decreasing the value of the index by one.

71 / 73

The End

Questions

?

72 / 73

The End

The End

Thank You For Your Attention!

73 / 73

	Abstract Data Structures
	Stack — Introduction
	Stack — Implementation
	Memory Leaks
	Examples of Stack Applications
	Summary

