
.

......

Fundamentals of Programming 2
The dfs and bfs Algorithms

Arkadiusz Chrobot

Department of Computer Science

May 25, 2020

1 / 70

Outline

...1 Introduction

...2 The DFS Algorithm

...3 The BFS Algorithm

...4 Summary

2 / 70

Introduction

Introduction

There are many algorithms for processing data expressed as graphs
that are generally known as graph algorithms. Most of them is based
on one of two fundamental graph traversing algorithms. Results of
such algorithms are paths that start in a specified vertex and cover
all vertices of a connected or strongly connected graph or end in
a goal vertex. The first of those two algorithms is the Deep-First
Search algorithm called the dfs for short. The second one is the
Breadth-First Search algorithm also known as the bfs. They are
described in this lecture in the same order as they are introduced in
this slide.

3 / 70

The DFS Algorithm

The DFS Algorithm
Theoretical Introduction

The dfs algorithm traverses a graph starting from a specified initial
vertex and visiting all vertices that are reachable from this node. If
a visited vertex has at least one neighbour (adjacent vertex), which
has not been yet visited, then this neighbour is added to a stack,
as the one to be visited next. In case the visited vertex has two or
more unvisited neighbours, only one of them is selected. Nodes that
are stored on the stack are called discovered vertices. The algorithm
marks the current vertex as visited, takes a single vertex from the
stack (provided the stack is not empty) and visits it repeating the
steps described in this slide. If another algorithm is based on the
dfs then it may process data stored in the currently visited vertex
before marking it as visited.

4 / 70

The DFS Algorithm

The DFS Algorithm
Theoretical Introduction

The name of the algorithm comes from the way it visits graph nodes
— it always choses one of the unvisited neighbours of the current
vertex and visits it as next. In other words it “goes deeper” in
the graph. If the visited vertex has no unvisited neighbours (or
no neighbours at all) then the dfs backtracks (“goes back”) to the
previous vertex and checks if there are any unvisited neighbours left.
If the graph processed by the dfs is connected or strongly connected,
then the algorithm will visit all its vertices. Otherwise, the dfs will
visit a component (a maximal connected subgraph) that contains
the initial vertex. In this case, if the objective of using the dfs is
to visit all vertices of such a graph then the algorithm should be
repeated for the unvisited vertices until all of them are visited.

5 / 70

The DFS Algorithm

The DFS Algorithm
Theoretical Introduction

The dfs algorithm can also be used for finding a path from an
initial vertex to a specified goal vertex or a vertex that satisfies a
goal condition. Because the dfs is a stack-based algorithm then it
is easy to implement in a form of a recursive function. When this
algorithm is applied to a binary tree it gives the same results as the
pre-order traversal algorithm. It means that the dfs is a generalised
pre-order traversal algorithm that can be applied to any graph. The
time-complexity of the dfs algorithm is Θ(V + E).

6 / 70

The DFS Algorithm

The DFS Algorithm
Animation

In the next slide is an animation that shows how the dfs algorithm
works when applied to the undirected graph that has been presented
in the previous lecture. At the top of the slide is a list of vertices
which have been visited by the dfs and form a path that is the
result of the algorithm. On the right is a stack, where the discovered
vertices are stored. The order of visiting the neighbours is arbitrary.
The vertex and the edge to be visited next are marked in red in the
graph diagram. The processed vertices are marked in yellow and the
vertices that have been already visited are marked in green. Because
the graph is connected, the algorithm visits all its vertices in one
go. There is no need to repeat it for unvisited vertices.

7 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

. 4. 4. 4.5.5.5.5. stack:. 4.
2

.

1

.

2

.

5

.

4

.

1

.

2

.

5

.

3

.

2

.

4

.

4

.
5

.
3

.

path:

.

4

.

2

.

1

.

5

.

3

Traversing an undirected graph with the use of the dfs algorithm.

8 / 70

The DFS Algorithm

The DFS Algorithm — Implementation

Next slides show a modified version of the program presented in
the previous lecture which traverses an undirected graph using the
dfs algorithm. The input for this algorithm is the graph adjacency
list which is the result of converting the adjacency matrix. Because
the graph is connected, the dfs visits all its vertices in one go, but
the program is also prepared for processing graphs which are not
connected.

9 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
Adjacency Matrix and Base Type of Adjacency List

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<stdbool.h>
4

5 typedef int matrix[5][5];
6

7 const matrix adjacency_matrix = {{0,1,0,0,1},
8 {1,0,1,1,1,},
9 {0,1,0,1,0,},

10 {0,1,1,0,1,},
11 {1,1,0,1,0,}};
12

13 struct vertex {
14 int vertex_number;
15 bool visited;
16 struct vertex *next, *down;
17 } *start_vertex;

10 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
Adjacency Matrix and Base Type of Adjacency List

Two new elements have been added to the beginning of the pro-
gram. The first one is the preprocessor directive that includes the
stdbool.h header file. The second one is a field in the adjacency
list base type, called visited. The data type of this field is bool.
The value of the field has a meaning only in the list of all graph
vertices — the “vertical” list, which is a part of the adjacency list.
If the vertex represented by the element of this list has been already
visited then the value of its visited field is true, otherwise it is
false.

11 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The Queue Base Type and the Queue Pointers Structure

1 struct fifo_node {
2 int vertex_number;
3 struct fifo_node *next;
4 };
5

6 struct fifo_pointers {
7 struct fifo_node *head, *tail;
8 } path;

12 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The Queue Base Type and the Queue Pointers Structure

In the previous slide are presented definitions of a fifo queue ele-
ment base type and a structure that stores the head and tail pointers
of that queue. A global variable of the fifo_pointers type, named
path, is also declared in this part of the program (8th line). The
queue is used for storing the path that is the result of the dfs, hence
each of its elements stores the number of a visited vertex.

13 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The enqueue() Function

1 void enqueue(struct fifo_pointers *fifo, int vertex_number)
2 {
3 struct fifo_node *new_node =
4 (struct fifo_node *)malloc(sizeof(struct fifo_node));
5 if(new_node) {
6 new_node->vertex_number = vertex_number;
7 new_node->next = NULL;
8 if(fifo->head==NULL)
9 fifo->head = fifo->tail = new_node;

10 else {
11 fifo->tail->next=new_node;
12 fifo->tail=new_node;
13 }
14 } else
15 fprintf(stderr,"No new element was created!\n");
16 }

14 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The enqueue() Function

In the previous slide is shown a definition of the enqueue() function,
which adds an element to a fifo queue. Please refer to the lecture
on queues for more detailed description of this function.

15 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The dequeue() Function

1 void dequeue(struct fifo_pointers *fifo)
2 {
3 if(fifo->head) {
4 struct fifo_node *tmp = fifo->head->next;
5 free(fifo->head);
6 fifo->head=tmp;
7 if(tmp==NULL)
8 fifo->tail = NULL;
9 }

10 }

16 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The dequeue() Function

The main difference between the dequeue() function presented in
the previous slide and its equivalent presented in the lecture on
queues is that the former returns no value, but only removes a single
element from the head of the fifo queue.

17 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The remove_queue() Function

1 void remove_queue(struct fifo_pointers *fifo)
2 {
3 while(fifo->head)
4 dequeue(fifo);
5 }

18 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The remove_queue() Function

The remove_queue() function calls in the while loop the dequeue()
function to delete the fifo queue. As an argument it takes the ad-
dress of the queue pointers structure. It doesn’t return any value.
The while loop stops when the head pointer has a value of null.

19 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The print_path() Function

1 void print_path(struct fifo_pointers fifo)
2 {
3 while(fifo.head) {
4 printf("%d ",fifo.head->vertex_number);
5 fifo.head = fifo.head->next;
6 }
7 puts("");
8 }

20 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The print_path() Function

The print_path() function is basically the print_queue() func-
tion modified to print the content of the fifo queue storing the
path created by the dfs algorithm.

21 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The create_vertical_list() Function

1 void create_vertical_list(struct vertex **start_vertex,
2 const matrix adjacency_matrix)
3 {
4 int i;
5 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {
6 *start_vertex = (struct vertex *)
7 malloc(sizeof(struct vertex));
8 if(*start_vertex) {
9 (*start_vertex)->vertex_number = i+1;

10 (*start_vertex)->visited = false;
11 (*start_vertex)->down = (*start_vertex)->next = NULL;
12 start_vertex = &(*start_vertex)->down;
13 }
14 }
15 }

22 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The create_vertical_list() Function

The create_vertical_list() function differs from its equivalent
from the previous lecture only in that it initializes (10th line) the
visited field of each node representing a vertex in the list of all
vertices.

23 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The convert_matrix_to_list() Function

1 struct vertex *convert_matrix_to_list(const matrix adjacency_matrix)
2 {
3 struct vertex *start_vertex = NULL;
4 create_vertical_list(&start_vertex,adjacency_matrix);
5 if(start_vertex) {
6 struct vertex *horizontal_pointer = NULL, *vertical_pointer = NULL;
7 horizontal_pointer = vertical_pointer = start_vertex;
8 int i,j;
9 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {

10 for(j=0; j<sizeof(matrix)/sizeof(*adjacency_matrix); j++)
11 if(adjacency_matrix[i][j]) {
12 struct vertex *new_vertex = (struct vertex *)malloc(sizeof(struct vertex));
13 if(new_vertex) {
14 new_vertex->vertex_number = j+1;
15 new_vertex->visited = false;
16 new_vertex->down = new_vertex->next = NULL;
17 horizontal_pointer->next = new_vertex;
18 horizontal_pointer = horizontal_pointer->next;
19 }
20 }
21 vertical_pointer = vertical_pointer->down;
22 horizontal_pointer = vertical_pointer;
23 }
24 }
25 return start_vertex;
26 }

24 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The convert_matrix_to_list() Function

The function that converts an adjacency matrix into an adjacency
list also differs by only one detail from its equivalent from the previ-
ous lecture. This detail is the initialisation of the visited field (15th
line) of each newly created node of the neighbours lists (“vertical”
lists in the adjacency list).

25 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The print_adjacency_list() Function

1 void print_adjacency_list(struct vertex *start_vertex)
2 {
3 while(start_vertex) {
4 printf("%3d:",start_vertex->vertex_number);
5 struct vertex *horizontal_pointer = start_vertex->next;
6 while(horizontal_pointer) {
7 printf("%3d",horizontal_pointer->vertex_number);
8 horizontal_pointer = horizontal_pointer->next;
9 }

10 start_vertex = start_vertex->down;
11 puts("");
12 }
13 }

26 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The print_adjacency_list() Function

The print_adjacency_list() function is implemented in exactly
the same way as its equivalent from the previous lecture.

27 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The remove_adjacency_list() Function

1 void remove_adjacency_list(struct vertex **start_vertex)
2 {
3 while(*start_vertex) {
4 struct vertex *horizontal_pointer=(*start_vertex)->next;
5 while(horizontal_pointer) {
6 struct vertex *next_horizontal =
7 horizontal_pointer->next;
8 free(horizontal_pointer);
9 horizontal_pointer = next_horizontal;

10 }
11 struct vertex *next_vertical = (*start_vertex)->down;
12 free(*start_vertex);
13 *start_vertex= next_vertical;
14 }
15 }

28 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The remove_adjacency_list() Function

The remove_adjacency_list() function is also implemented in the
same way as its equivalent from the previous lecture.

29 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The find_vertex() Function

1 struct vertex *find_vertex(struct vertex *start_vertex,
2 int vertex_number)
3 {
4 while(start_vertex &&
5 start_vertex->vertex_number!=vertex_number)
6 start_vertex = start_vertex->down;
7 return start_vertex;
8 }

30 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The find_vertex() Function

The find_vertex() function is a helper subroutine for the function
that implements the dfs algorithm. Its task is to locate a node in
the list of all vertices (the “vertical” list) that represents a vertex
of a specified number. It takes as arguments the address of the
adjacency list starting node and the number of the sought vertex.
The function traverses the list of all vertices using the while loop
and the start_vertex parameter (lines no. 4–6) and it checks if the
node currently pointed by this parameter stores the sought number.
If not, it advances to the next element of the list, otherwise the loop
stops and the function returns the address of the located node that
represents the sought vertex. The function returns the null value
when its first argument is an empty pointer or the second argument
is a number of a nonexistent vertex.

31 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The has_not_been_visited() Function

1 bool has_not_been_visited(struct vertex *start_vertex,
2 const struct vertex *vertex)
3 {
4 return !find_vertex(start_vertex,
5 vertex->vertex_number)->visited;
6 }

32 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The has_not_been_visited() Function

The has_not_been_visited() function checks if a specified vertex
is unvisited. It takes two arguments: the address of the adjacency
list starting node and the address of the node representing the veri-
fied vertex in the list of neighbours (one of the “horizontal” lists) of
the currently visited vertex. The has_not_been_visited() func-
tion invokes the find_vertex() function to locate the node repre-
senting the verified vertex in the list of all vertices (the “vertical”
list). The latter function returns a pointer to the sought element,
which is immediately dereferenced1 (5th line) to get the value of the
visited field of the verified vertex. The has_not_been_visited()
function returns a negated value of that field.

1It is not the best idea — the find_vertex() function may return the null
value.

33 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The dfs() Function

1 void dfs(struct vertex *start_vertex, struct vertex *vertex,
2 struct fifo_pointers *fifo)
3 {
4 if(start_vertex && vertex) {
5 enqueue(fifo, vertex->vertex_number);
6 vertex->visited = true;
7 while(vertex) {
8 vertex = vertex->next;
9 if(vertex &&

10 has_not_been_visited(start_vertex,vertex))
11 dfs(start_vertex,find_vertex(start_vertex,
12 vertex->vertex_number),fifo);
13 }
14 }
15 }

34 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The dfs() Function

The dfs() function, as its name suggests, implements the dfs al-
gorithm. It doesn’t return any value and takes three arguments.
The first one is the address of the adjacency list starting node. The
second one is the address of the initial vertex for the dfs algorithm.
The last argument is the address of the fifo queue pointers struc-
ture. The queue is used for storing the path created by the function.
In the 4th line the function verifies if the addresses of vertices passed
by its parameters are not null. If so, then it adds to the fifo queue
a new element that stores the number of the vertex that is repre-
sented by a node pointed by the vertex parameter (5th line). Next,
the function marks the vertex as visited by storing the true value
in the visited field (6th line). Then it performs the while loop.
Inside that loop the function takes the address stored in the next
field of a node pointed by the vertex pointer and assigns it to that
pointer (8th line).

35 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The dfs() Function

If the address is not null, then it means that the currently vis-
ited vertex has at least one neighbour and now the vertex pointer
points to a node in the neighbours list that represents the first of
them. In lines no. 9 and no. 10 the dfs() function verifies the
existence of that vertex and if it is unvisited. If both conditions
are met then the function invokes itself recursively for the neigh-
bour vertex. This time as the second argument it takes the result of
the find_vertex() function which returns the address of the node
representing the neighbour vertex in the list of all vertices of the
graph (the “vertical” list). After the dfs() function returns from
the recursive call a next iteration of the while loop is performed.
If another unvisited neighbour of the current vertex exists then the
dfs() function calls itself recursively again, but this time for that
neighbour vertex.

36 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The visit_all_vertexes() Function

1 void visit_all_vertexes(struct vertex *start_vertex)
2 {
3 struct vertex *vertex = start_vertex;
4 while(vertex) {
5 if(!vertex->visited) {
6 struct fifo_pointers path;
7 path.head = path.tail = NULL;
8 dfs(start_vertex,vertex,&path);
9 print_path(path);

10 remove_queue(&path);
11 }
12 vertex = vertex->down;
13 }
14 }

37 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The visit_all_vertexes() Function

The visit_all_vertexes() function is invoked after the dfs()
function exits. It verifies if all the vertices of the graph have been
visited and it calls the dfs() function for those of them that haven’t
been. The function returns no value, but takes one argument which
is the address of the adjacency list starting node. In the 3rd line
a local pointer named vertex is declared and initialized with the
address stored in the start_vertex parameter. Although the func-
tion could used the start_vertex parameter for traversing the list
of all vertices, without any consequences for the rest of the program,
since its argument is passed by value, it is necessary to use another
pointer for that purpose, because the address of the adjacency list
starting node is used in another part of the function.

38 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The visit_all_vertexes() Function

In the while loop the function traverses the list of all vertices of
the graph (the “vertical” list) using the vertex pointer and checks
if any of them has not been yet visited (line no. 5). If so, then in
the 8th line the dfs() function is invoked for that unvisited vertex.
The address of the fifo queue pointers structure declared in the
6th line and initialised in the 7th line is passed as the last argument
of the dfs() function. In other words the visit_all_vertexes()
function uses its own local fifo queue. After the dfs() function
exits the content of the queue is displayed on the screen and the
queue is deleted, allowing the queue pointers structure to be used
again for creating another instance of the queue in case some unvis-
ited vertices are still left in the graph. The while loop stops after
each node in the list of all vertices has been verified, which assures
that the whole graph is traversed.

39 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The main() Function

1 int main(void)
2 {
3 start_vertex = convert_matrix_to_list(adjacency_matrix);
4 if(start_vertex) {
5 print_adjacency_list(start_vertex);
6 puts("Please enter the number of the initial vertex:");
7 int vertex_number = 0;
8 scanf("%d",&vertex_number);
9 dfs(start_vertex,find_vertex(start_vertex,vertex_number), &path);

10 puts("The DFS algorithm result:");
11 print_path(path);
12 remove_queue(&path);
13 visit_all_vertexes(start_vertex);
14 remove_adjacency_list(&start_vertex);
15 }
16 return 0;
17 }

40 / 70

The DFS Algorithm

The DFS Algorithm — Implementation
The main() Function

In the 6th line the main() function displays a message asking the
user to enter the number of the initial vertex for the dfs algorithm.
The number is stored in a local variable named vertex_number
(8th line). Next, the dfs() function is called. The second argument
of that function — the address of the node representing the initial
vertex in the list of all vertices — is returned by the find_vertex()
function. The path returned by the dfs() function is displayed on
the screen (lines no. 10 and 11) and the program deletes the queue
that stores the path (12th line). In the 13th line the main() function
calls the visit_all_vertexes() function to visit all the unvisited
vertices of the graph. The rest of the main() function is the same
as in the program presented in the previous lecture.

41 / 70

The BFS Algorithm

The BFS Algorithm
Theoretical Introduction

The bfs algorithm, just like the dfs algorithm, traverses a graph.
The main difference between those two algorithms is that the bfs
uses a fifo queue instead of a stack to store the discovered ver-
tices. When visiting a vertex the algorithm adds all its unvisited
neighbours to this queue. After marking the current vertex as vis-
ited the bfs algorithm removes and visits the first discovered vertex
from the head of the queue. All neighbours of every vertex are vis-
ited before any other vertices, hence the name of this algorithm:
Breadth-First Search. The algorithm is usually implemented in a
form of an iterative function. Its time-complexity is O(V + E).

42 / 70

The BFS Algorithm

The BFS Algorithm
Animation

In the next slide is an animation that shows how the bfs algorithm
works when it is applied for an undirected graph — it is the same
graph as in the case of the dfs algorithm. In the animation the
fifo queue is used instead of the stack. It is shown at the bottom
of the slide. All other elements of the animation are the same as for
the dfs algorithm.

43 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm
Animation

..

1

.

1

.

1

.

1

.

2

.

2

.

2

.

2

.

3

.

3

.

3

.

3

.

3

.

4

.

4

.

4

.

5

.

5

.

5

.

5

.fifo queue:. 4. 2. 3. 5. 1.

path:

.

4

.

2

.

3

.

5

.

1

Traversing an undirected graph with the use of the bfs algorithm.

44 / 70

The BFS Algorithm

The BFS Algorithm — Implementation

Next slides present the program demonstrated earlier, but this time
it uses the bfs algorithm instead of the dfs for traversing a graph.
Only those elements that have been modified are described.

45 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
Adjacency Matrix and Base Type of Adjacency List

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<stdbool.h>
4

5 typedef int matrix[5][5];
6

7 const matrix adjacency_matrix = {{0,1,0,0,1},
8 {1,0,1,1,1},
9 {0,1,0,1,0},

10 {0,1,1,0,1},
11 {1,1,0,1,0}};
12

13 struct vertex
14 {
15 int vertex_number;
16 bool visited;
17 struct vertex *next, *down;
18 } *start_vertex;

46 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The Queue Base Type and the Queue Pointers Structure

1 struct fifo_node
2 {
3 int vertex_number;
4 struct fifo_node *next;
5 };
6

7 struct fifo_pointers
8 {
9 struct fifo_node *head, *tail;

10 } path_fifo, discovered_fifo;

47 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The Queue Base Type and the Queue Pointers Structure

Please notice, that an additional variable, named discovered_fifo,
is declared in this part of code. It is a structure of pointers for the
queue of discovered vertices.

48 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The enqueue() Function

1 void enqueue(struct fifo_pointers *fifo, int vertex_number)
2 {
3 struct fifo_node *new_node = (struct fifo_node *)
4 malloc(sizeof(struct fifo_node));
5 if(new_node) {
6 new_node->vertex_number = vertex_number;
7 new_node->next = NULL;
8 if(fifo->head==NULL)
9 fifo->head = fifo->tail = new_node;

10 else {
11 fifo->tail->next=new_node;
12 fifo->tail=new_node;
13 }
14 } else
15 fprintf(stderr,"No new element was created!\n");
16 }

49 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The dequeue() Function

1 int dequeue(struct fifo_pointers *fifo)
2 {
3 int vertex_number = -1;
4 if(fifo->head) {
5 struct fifo_node *tmp = fifo->head->next;
6 vertex_number = fifo->head->vertex_number;
7 free(fifo->head);
8 fifo->head=tmp;
9 if(tmp==NULL)

10 fifo->tail = NULL;
11 }
12 return vertex_number;
13 }

50 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The dequeue() Function

The dequeue() function, unlike its equivalent from the earlier pro-
gram, returns the number of the vertex represented by the element
removed from the queue. If the queue is empty the function returns
-1.

51 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The remove_queue() Function

1 void remove_queue(struct fifo_pointers *fifo)
2 {
3 while(fifo->head)
4 dequeue(fifo);
5 }

52 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The print_path() Function

1 void print_path(struct fifo_pointers fifo)
2 {
3 while(fifo.head) {
4 printf("%d ",fifo.head->vertex_number);
5 fifo.head = fifo.head->next;
6 }
7 puts("");
8 }

53 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The create_vertical_list() Function

1 void create_vertical_list(struct vertex **start_vertex,
2 const matrix adjacency_matrix)
3 {
4 int i;
5 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {
6 *start_vertex = (struct vertex *)
7 malloc(sizeof(struct vertex));
8 if(*start_vertex) {
9 (*start_vertex)->vertex_number = i+1;

10 (*start_vertex)->visited = false;
11 (*start_vertex)->down = (*start_vertex)->next = NULL;
12 start_vertex = &(*start_vertex)->down;
13 }
14 }
15 }

54 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The convert_matrix_to_list() Function

1 struct vertex *convert_matrix_to_list(const matrix adjacency_matrix)
2 {
3 struct vertex *start_vertex = NULL;
4 create_vertical_list(&start_vertex,adjacency_matrix);
5 if(start_vertex) {
6 struct vertex *horizontal_pointer = NULL, *vertical_pointer = NULL;
7 horizontal_pointer = vertical_pointer = start_vertex;
8 int i,j;
9 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {

10 for(j=0; j<sizeof(matrix)/sizeof(*adjacency_matrix); j++)
11 if(adjacency_matrix[i][j]) {
12 struct vertex *new_vertex = (struct vertex *)malloc(sizeof(struct vertex));
13 if(new_vertex) {
14 new_vertex->vertex_number = j+1;
15 new_vertex->visited = false;
16 new_vertex->down = new_vertex->next = NULL;
17 horizontal_pointer->next = new_vertex;
18 horizontal_pointer = horizontal_pointer->next;
19 }
20 }
21 vertical_pointer = vertical_pointer->down;
22 horizontal_pointer = vertical_pointer;
23 }
24 }
25 return start_vertex;
26 }

55 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The print_adjacency_list() Function

1 void print_adjacency_list(struct vertex *start_vertex)
2 {
3 while(start_vertex) {
4 printf("%3d:",start_vertex->vertex_number);
5 struct vertex *horizontal_pointer = start_vertex->next;
6 while(horizontal_pointer) {
7 printf("%3d",horizontal_pointer->vertex_number);
8 horizontal_pointer = horizontal_pointer->next;
9 }

10 start_vertex = start_vertex->down;
11 puts("");
12 }
13 }

56 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The remove_adjacency_list() Function

1 void remove_adjacency_list(struct vertex **start_vertex)
2 {
3 while(*start_vertex) {
4 struct vertex *horizontal_pointer=(*start_vertex)->next;
5 while(horizontal_pointer) {
6 struct vertex *next_horizontal =
7 horizontal_pointer->next;
8 free(horizontal_pointer);
9 horizontal_pointer = next_horizontal;

10 }
11 struct vertex *next_vertical = (*start_vertex)->down;
12 free(*start_vertex);
13 *start_vertex= next_vertical;
14 }
15 }

57 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The find_vertex() Function

1 struct vertex *find_vertex(struct vertex *start_vertex,
2 int vertex_number)
3 {
4 while(start_vertex &&
5 start_vertex->vertex_number!=vertex_number)
6 start_vertex = start_vertex->down;
7 return start_vertex;
8 }

58 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The has_not_been_visited() Function

1 bool has_not_been_visited(struct vertex *start_vertex,
2 struct vertex *vertex)
3 {
4 return !find_vertex(start_vertex,
5 vertex->vertex_number)->visited;
6 }

59 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The bfs() Function

1 void bfs(struct vertex *start_vertex, struct vertex *vertex,
2 struct fifo_pointers *path_fifo, struct fifo_pointers *discovered_fifo)
3 {
4 if(start_vertex && vertex) {
5 enqueue(discovered_fifo, vertex->vertex_number);
6 while(discovered_fifo->head) {
7 int vertex_number = dequeue(discovered_fifo);
8 vertex = find_vertex(start_vertex,vertex_number);
9 if(has_not_been_visited(start_vertex,vertex)) {

10 struct vertex *next_vertex = vertex->next;
11 while(next_vertex) {
12 enqueue(discovered_fifo, next_vertex->vertex_number);
13 next_vertex = next_vertex->next;
14 }
15 vertex->visited = true;
16 enqueue(path_fifo, vertex->vertex_number);
17 }
18 }
19 }
20 }

60 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The bfs() Function

The bfs() function implements the bfs graph traversal algorithm.
It returns no value but takes four arguments — an address of the
adjacency list starting node, an address of the initial vertex for the
bfs algorithm, an address of the pointers structure for the queue
where the path created by the algorithm will be stored and an ad-
dress for another pointers structure, but this time for the queue
which will store the discovered vertices. In the 4th line the function
verifies if the first two addresses passed by its parameters are not
null. If so, it adds to the discovered_fifo queue a new element
storing the number of the vertex also stored in the node pointed by
the vertex parameter (5th line) and starts the outer while loop,
which is repeated until the queue of discovered vertices is empty
(6th line).

61 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The bfs() Function

Inside this loop the bfs() function removes the first element from
the discovered_fifo queue (7th line) and assigns the vertex num-
ber stored in that element to the vertex_number variable, which
is then used by the find_vertex() function to find the address of
the node representing that vertex in the list of all vertices. This ad-
dress is assigned to the vertex pointer. In the 9th line the function
checks if the vertex is unvisited. If so, then it assigns the address
stored in the next field of the node pointed by the vertex variable
to the next_vertex pointer. If after the assignment the value of this
pointer is not null then it means that the vertex has a nonempty
list of its neighbours and that the next_vertex pointer points to
the first element of this list. Inside the inner while loop (lines no.
11–14) the bfs() function traverses that list, gets the vertex num-
bers stored in its elements and adds them to the discovered_fifo
queue.

62 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The bfs() Function

When the inner loop stops the bfs() function marks the current ver-
tex (pointed by the vertex pointer) as visited and stores its number
in the path_fifo queue. The function exits when all vertices reach-
able from the initial vertex are visited. The result of this function
is the path stored in the path_fifo queue.

63 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The visit_all_vertexes() Function

1 void visit_all_vertexes(struct vertex *start_vertex)
2 {
3 struct vertex *vertex = start_vertex;
4 while(vertex) {
5 if(!vertex->visited) {
6 struct fifo_pointers path;
7 struct fifo_pointers discovered;
8 path.head = path.tail = discovered.head =
9 discovered.tail = NULL;

10 bfs(start_vertex, vertex, &path, &discovered);
11 print_path(path);
12 remove_queue(&path);
13 remove_queue(&discovered);
14 }
15 vertex = vertex->down;
16 }
17 }

64 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The visit_all_vertexes() Function

The visit_all_vertexes() function differs from its equivalent from
the previous program in that it invokes the bfs() function instead
of the dfs() function (10th line) and it uses two fifo queues instead
of one. The pointers structure of the second queue is declared in
the 7th line and initialised in lines no. 8 and no. 9. This queue is
used by the bfs() function for storing the discovered vertices and
then it is deleted in the 13th line.

65 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The main() Function

1 int main(void)
2 {
3 start_vertex = convert_matrix_to_list(adjacency_matrix);
4 if(start_vertex) {
5 print_adjacency_list(start_vertex);
6 puts("Please enter the number of the initial vertex:");
7 int vertex_number = 0;
8 scanf("%d",&vertex_number);
9 bfs(start_vertex,find_vertex(start_vertex,vertex_number),

10 &path_fifo, &discovered_fifo);
11 puts("The BFS algorithm result:");
12 print_path(path_fifo);
13 remove_queue(&path_fifo);
14 remove_queue(&discovered_fifo);
15 visit_all_vertexes(start_vertex);
16 remove_adjacency_list(&start_vertex);
17 }
18 return 0;
19 }

66 / 70

The BFS Algorithm

The BFS Algorithm — Implementation
The main() Function

There are two changes in the main() function. First of all it calls the
bfs() function instead of the dfs() function. It also declares and
initializes the discovered_fifo queue pointers structure, which is
then used by the bfs() function. The function that deletes the
discovered vertices queue is called in the 14th line, although if the
bfs() function completes its job successfully then this queue should
already be empty.

67 / 70

Summary

Summary

The bfs and dfs algorithms can be applied either to undirected or
directed graphs and it doesn’t matter if those graphs are connected,
strongly connected or disconnected. The two algorithms are the
basis of many other graph algorithms. Among them is a family
of heuristic graph traversal algorithms known as Best-First Search
algorithms. One of them is the A∗ algorithm. Initially the bfs and
dfs algorithms were used in the Artificial Intelligence, but nowadays
they are applied in many other branches of Computer Science.

68 / 70

The End

Questions

?

69 / 70

The End

The End

Thank You For Your Attention!

70 / 70

	Introduction
	The DFS Algorithm
	The BFS Algorithm
	Summary

