
.

......

Fundamentals of Programming 2
Graphs And Their Reperesentations

Arkadiusz Chrobot

Department of Computer Science

May 18, 2020

1 / 42

Outline

...1 Introduction

...2 Graph Theory

...3 Graphs as Data Structures

...4 Applications of Graphs

2 / 42

Introduction

Introduction

Graphs are data structures that have many applications in Com-
puter Science. Generally, they are used for expressing relations
between data items. Those data structures are based on the math-
ematical concept of graphs discovered by a Swiss mathematician
Leonhard Euler, while working on the problem of the Seven Bridges
of Königsberg. At the same time he defined a new branch of math-
ematics called topology. In contemporary mathematics graphs are
an object of study for such branches of discrete mathematics as the
graph theory and the set theory.
Before the applications and representations of graphs as data struc-
tures are presented, some of the mathematical definitions associated
with them will be introduced in this lecture. Unfortunately, there is
no standardized terminology in the graph theory, so the definitions
may differ a bit from the ones presented in other learning materials.

3 / 42

Graph Theory

Graph Theory
Directed Graph

A directed graph or a digraph G is defined as a pair (V, E), where
V is a finite set, which elements are called vertices or nodes of the
graph G, E is a binary relation on V and E ⊆ V × V . The set V is
called the set of vertices. The set E is the set of edges of the graph
G. Its elements are called edges.

4 / 42

Graph Theory

Graph Theory
Undirected Graph

An undirected graph is a graph which E set consists of unordered
pairs of vertices. It means that an edge is a set {u, v} where u, v ∈ V
and u ̸= v. The edge is denoted as (u, v). The pairs (u, v) and
(v, u) specify the same edge. There are no loops (edges that join a
vertex to itself) in the undirected graphs.

5 / 42

Graph Theory

Graph Theory

..

1

.

2

.3. 4

(a) A directed graph

..

1

.

2

.3. 4

(b) An undirected graph

Examples of graphs

6 / 42

Graph Theory

Graph Theory
Edge Types

In the directed graph G = (V, E) the edge (u, v) is an outgoing
edge from the vertex u and an incoming edge to the vertex v. In
the undirected graph the edge (u, v) is called incident on vertices u
and v. It joins u and v.

7 / 42

Graph Theory

Graph Theory
Neighbourhood

A vertex v is an adjacent vertex to the vertex u and it is a neighbour
of the vertex u in a graph G = (V, E) if those vertices are connected
by an edge (v, u). In a directed graph the adjacency relation doesn’t
have to be symmetric.

8 / 42

Graph Theory

Graph Theory
Vertex Degree

The degree of a vertex in an undirected graph is the number of
edges incident on the vertex. In a directed graph the out-degree of
a vertex is the number of its outgoing edges and the in-degree of a
vertex is the number of its incoming edges. In a directed graph the
degree of a vertex is a sum of its in-degrees and out-degrees.

9 / 42

Graph Theory

Graph Theory
Path

A path (route) of the length k from a vertex u to a vertex u′ in a
graph G = (V, E) is a sequence ⟨v0, v1, v2, . . . , vk⟩ of vertices such
that u = v0, u′ = vk and (vi−1, vi) ∈ E for i = 1, 2, . . . , k. The path
length is the number of the edges in the path. The path contains
vertices v0, v1, v2, . . . , vk and edges (v0, v1), (v1, v2), . . . , (vk−1, vk).
If there is a path from a vertex u to a vertex u′, then the u′ vertex
is reachable from the u vertex via the path p. A path is called a
simple path if all vertices in the path are different.

10 / 42

Graph Theory

Graph Theory
Cycles

A path ⟨v0, v1, v2, . . . , vk⟩ forms a cycle if v0 = vk. A cycle is a
simple cycle if all of its vertices are different. A loop in a directed
graph is a cycle of the length 1. A digraph that has no loops or
parallel edges (appearing more then once) is called a simple graph.
A graph that has no cycles is called an acyclic graph.

11 / 42

Graph Theory

Graph Theory
Connectedness

An undirected graph is connected if there is a path between any two
vertices of the graph. A digraph is strongly connected if any two
vertices in the graph are reachable from each other.

12 / 42

Graph Theory

Graph Theory
Isomorphism

Two graphs G = (E, V) and G′ = (V ′, E′) are isomorphic if there ex-
ists a bijective mapping f : v Ï v ′, such that if the edge (u, v) ∈ E,
then also (f(u), f(v)) ∈ E′. The property of the graphs means that
every undirected graph can be replaced by its directed version by
replacing every undirected edge by two directed ones. The directed
graph can be replaced by its undirected version by replacing every
directed edge into undirected one and removing loops.

13 / 42

Graph Theory

Graph Theory
Dense and Sparse Graphs

An undirected graph is a dense graph if every pair of its vertices is
connected by an edge. The number of edges in such a graph is

(n
2

)
,

where n is the number of edges in the graph. A graph that has only
a small fraction of the number of vertices in a dense graph is called
a sparse graph.

14 / 42

Graphs as Data Structures

Graphs as Data Structures

There are two basic ways of representing graphs in programming
languages: the adjacency matrix and the adjacency list. The ad-
jacency list can be implemented as a list of lists or as an array of
pointers to lists. The adjacency matrix is a statically or dynam-
ically allocated two-dimensional array. The rows and columns in
such a matrix represents the vertices of a graph. If two vertices are
connected by an edge, then in the element of the adjacency matrix
located at the intersection of the column and the row associated
with those vertices is stored 1, otherwise there is stored 0. The
next slides present directed and undirected graphs and adjacency
matrices and lists that represents them.

15 / 42

Graphs as Data Structures

Representations of Undirected Graph

..

1

.

2

.
3

. 4.5

0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

.. /. /. /. /. /.5. 4. 1. 2.
/

.
/

.
/

.
/

.
4

.
2

.
5

.
3

.

/

.

/

.

/

.

3

.

2

.

4

.

/

.

/

.

/

.

/

.

/

.

2

.

1

.

5

.

3

.

4

.

/

.

/

.

/

.

1

.

2

.

5

16 / 42

Graphs as Data Structures

Representations of Undirected Graph

On the left side of the previous slide is a diagram of an undirected
graph. In the middle of the slide is the adjacency matrix of that
graph and on the right side is its adjacency list in a from of a list of
lists. The characters / inside elements of the adjacency list denote
pointer fields that store the null value. Please observe, that the
adjacency matrix is symmetrical along its main diagonal, thus A =
AT where A is the adjacency matrix. Because the adjacency matrix
equals its transposed self, then a memory space can be saved by
storing only the values of the elements of either the upper or the
lower triangular matrix.

17 / 42

Graphs as Data Structures

Representations of Directed Graph

..

1

.

2

.

3

.4. 5. 6

0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

.. /. /. /.6. 6.
/

.
/

.
5

.
4

.

/

.

/

.

4

.

2

.

/

.

/

.

/

.

3

.

6

.

5

.

/

.

/

.

2

.

5

.

/

.

/

.

/

.

1

.

2

.

4

18 / 42

Graphs as Data Structures

Representations of Directed Graph

Similarly as in the case of the undirected graph, in the previous
slide are shown respectively (from left to right): the diagram of a
directed graph, its adjacency matrix and its adjacency list. The
adjacency matrix is still a square matrix, but its not symmetrical.
Also please note, that the graph has a single edge that is a loop. In
the adjacency matrix the loop is represented by the element located
at the intersection of the sixth row and sixth column, which value
is 1.

19 / 42

Graphs as Data Structures

Representations of Graphs
Summary

Statistically, the adjacency list is the most frequently used repre-
sentation of graphs in Computer Science. It’s implemented either
as a list of lists or an array of lists. Each element of such an array
or a list of vertices (the vertical list in figures from previous slides)
corresponds to one of the graph’s vertices and points to the list of
its neighbours i.e. adjacent vertices. The order of neighbour list
vertices has no meaning. The number of vertices in all neighbour
lists for a directed graph is |E| and for an undirected graph is 2 · |E|,
where |E| is the cardinality of the set of edges. Thus, the space
complexity of the adjacency list is O(V + E), while the space com-
plexity of the adjacency matrix is Θ(V2). Both representations can
be used for expressing either weighted or unweighted graphs. In the
latter case the space required for storing the matrix can be saved
by using a bitwise matrix, which stores the values of its elements
in single bits. However, the operations on such a matrix are more
time-consuming than on a regular matrix. 20 / 42

Graphs as Data Structures

Representations of Graphs
Summary

The adjacency matrices are more suitable for problems of checking
the existence of an edge between two vertices or for adding or re-
moving an edge in a graph with a fixed number of vertices. On
the other hand the adjacency lists are more useful for traversing the
graph (most of graph algorithms perform such an operation) or find-
ing the degree of vertices. Also they are better than the adjacency
matrices in representing small or sparse graphs. Adjacency matrices
are a better choice for representing dense graphs.
Both representations are interchangeable, i.e. the adjacency matrix
can be converted into adjacency list and the other way. Next slides
show the source code of a program, that converts the adjacency
matrix of the undirected graph, presented on previous slides, into
an adjacency list.

21 / 42

Graphs as Data Structures

Graphs as Data Structures
Adjacency Matrix and Base Type for the Adjacency List

1 #include<stdio.h>
2 #include<stdlib.h>
3

4 typedef int matrix[5][5];
5

6 const matrix adjacency_matrix = {{0,1,0,0,1},
7 {1,0,1,1,1},
8 {0,1,0,1,0},
9 {0,1,1,0,1},

10 {1,1,0,1,0}};
11

12 struct vertex
13 {
14 int vertex_number;
15 struct vertex *next, *down;
16 } *start_vertex; 22 / 42

Graphs as Data Structures

Graphs as Data Structures
Adjacency Matrix and Base Type for Adjacency List

In the program are used functions defined in stdio.h and stdlib.h
header files. A data type for the adjacency matrix (a two-dimensional
square array of 25 elements) is defined in the 4th line. The adja-
cency matrix for an undirected and unweighted graph is created in
lines 6–10. The base data type for the adjacency list (the list of
lists) is defined in the lines 12–16. The down pointer field is used
for linking the elements of a list of all vertices (the “vertical list”)
and the next pointer field is used for building the lists of vertex
neighbours (the “horizontal lists”). Additionally, in the 16th line is
declared the start_vertex pointer that points to an element of the
adjacency list, that represents the starting vertex1. The pointer is
a global variable, so its initial value is null.

1It is the top left element in the figures from the previous slides.
23 / 42

Graphs as Data Structures

Graphs as Data Structures
The create_vertical_list() Function

1 void create_vertical_list(struct vertex **start_vertex,
2 const matrix adjacency_matrix)
3 {
4 int i;
5 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {
6 *start_vertex = (struct vertex *)
7 malloc(sizeof(struct vertex));
8 if(*start_vertex) {
9 (*start_vertex)->vertex_number = i+1;

10 (*start_vertex)->down = (*start_vertex)->next = NULL;
11 start_vertex = &(*start_vertex)->down;
12 }
13 }
14 }

24 / 42

Graphs as Data Structures

Graphs as Data Structures
The create_vertical_list() Function

The create_vertical_list() function creates the “vertical” list,
i.e. the list of all vertices in the graph. It doesn’t return any value.
By the first parameter of the function is passed the address of the
start_vertex pointer. The parameter is also used in the function’s
body for different purposes. By the second parameter is passed the
adjacency matrix. In this case passing by constant is used because
the content of the matrix is not modified inside the function. The
“vertical” list is created inside the for loop. The number of itera-
tions of this loop equals the number of graph vertices defined by the
number of columns in the adjacency matrix. The latter number is
calculated by dividing the size of the matrix data type by the size of
a single row (in the case of a two-dimensional array a single row of
the matrix can be accessed by dereferencing a pointer to the array).

25 / 42

Graphs as Data Structures

Graphs as Data Structures
The create_vertical_list() Function

In the for loop the memory for elements of the “vertical” list is
allocated. If the allocation is successful, then the vertex number2 is
stored in the vertex_number field of the new element, both pointer
fields are initialised (10th line) and the address of the element down
pointer field is assigned to the start_vertex pointer (11th line).
This makes it possible to avoid writing a separated code for handling
the case when the first element of the list is created. After the loop
stops the pointer points the down field of the last element.

2The value of the loop counter incremented by one — because vertices are
numbered starting from one and the row of the matrix is represented by a zero-
based array.

26 / 42

Graphs as Data Structures

Graphs as Data Structures
The convert_matrix_to_list() Function

1 struct vertex *convert_matrix_to_list(const matrix adjacency_matrix)
2 {
3 struct vertex *start_vertex = NULL;
4 create_vertical_list(&start_vertex,adjacency_matrix);
5 if(start_vertex) {
6 struct vertex *horizontal_pointer = NULL, *vertical_pointer = NULL;
7 horizontal_pointer = vertical_pointer = start_vertex;
8 int i,j;
9 for(i=0; i<sizeof(matrix)/sizeof(*adjacency_matrix); i++) {

10 for(j=0; j<sizeof(matrix)/sizeof(*adjacency_matrix); j++)
11 if(adjacency_matrix[i][j]) {
12 struct vertex *new_vertex = (struct vertex *)malloc(sizeof(struct vertex));
13 if(new_vertex) {
14 new_vertex->vertex_number = j+1;
15 new_vertex->down = new_vertex->next = NULL;
16 horizontal_pointer->next = new_vertex;
17 horizontal_pointer = horizontal_pointer->next;
18 }
19 }
20 vertical_pointer = vertical_pointer->down;
21 horizontal_pointer = vertical_pointer;
22 }
23 }
24 return start_vertex;
25 }

27 / 42

Graphs as Data Structures

Graphs as Data Structures
The convert_matrix_to_list() Function

The convert_matrix_to_list() function converts the adjacency
matrix to the adjacency list. It returns the address of the element
of the list that represents the starting vertex and as an argument it
takes the adjacency matrix. The matrix is passed by constant. The
function has a local pointer variable named start_vertex, which is
initialised with the null value. The function creates the “vertical”
list by calling the create_vertical_list() function (4th line). If
the list is successfully created, which is verified in the 5th line, then
the function starts iterating over all elements of the matrix with the
use of two for loops. Before that happens, two local pointers (the
horizontal_pointer and the vertical_pointer) are declared and
initialized (lines no. 6 and 7). The former is used for traversing the
“horizontal” lists and the latter for traversing the “vertical” list.

28 / 42

Graphs as Data Structures

Graphs as Data Structures
The convert_matrix_to_list() Function

The outer for loop iterates over the rows of adjacency list and the
inner one over the columns. The value of the column index incre-
mented by one is the number of a graph vertex, which is potentially
adjacent to the vertex specified by the row index. In the inner for
loop the function checks if the value of the current element of ma-
trix is not zero (11th line). If so, then a new element of the list of
lists is created which represents the adjacent vertex (12th line). If
the node is created successfully then the vertex number is stored in
it (14th line) and its pointer fields are initialized (15th line). Fi-
nally, the node is added to the list of neighbours (the “horizontal”
list) of current vertex (lines no. 16 and 17). In the last operation,
the horizontal_pointer variable is used which points to the last
(initially also the first) element of the list of neighbours.

29 / 42

Graphs as Data Structures

Graphs as Data Structures
The convert_matrix_to_list() Function

After the inner for loop stops, the address of the next element
of the “vertical” list (the list of all vertices) is assigned to the
vertical_pointer variable (20th line). The same address is also
stored in the horizontal_pointer variable. After both loops stop
the convert_matrix_to_list() function returns the address of the
starting vertex and exits.

30 / 42

Graphs as Data Structures

Graphs as Data Structures
The print_adjacency_list() Function

1 void print_adjacency_list(struct vertex *start_vertex)
2 {
3 while(start_vertex) {
4 printf("%3d:",start_vertex->vertex_number);
5 struct vertex *horizontal_pointer = start_vertex->next;
6 while(horizontal_pointer) {
7 printf("%3d",horizontal_pointer->vertex_number);
8 horizontal_pointer = horizontal_pointer->next;
9 }

10 start_vertex = start_vertex->down;
11 puts("");
12 }
13 }

31 / 42

Graphs as Data Structures

Graphs as Data Structures
The print_adjacency_list() Function

The function in the previous slide displays the content of the adja-
cency list on the screen in a form close to what is presented in the
figures illustrating this data structure. It doesn’t return any value
but takes as an argument the address of the node in the adjacency
list that represents the starting vertex. There are two while loops in
the function. The outer loop iterates over the list of all vertices (the
“vertical” list) and the inner loop iterates over the lists of adjacent
vertices (provided they are not empty). The outer loop is performed
if the value of the start_vertex pointer is not null (3rd line). If
the condition is met, then the vertex number stored in the first node
of the list of all vertices is displayed (4th line) and then the pointer
to the list of adjacent vertices, declared in the 5th line, is initialised.
If its value is also other than null, then the inner while loop is
performed (6th line).

32 / 42

Graphs as Data Structures

Graphs as Data Structures
The print_adjacency_list() Function

In the inner loop the vertex numbers from the neighbours list are
printed (7th line). The horizontal_pointer variable is used for
traversing the list. The addressed of the subsequent nodes of the
list are assigned to the pointer in the subsequent iterations of the
loop (8th line). After the inner loop stops the address of the next
node of the “vertical” list is assigned to the start_vertex pointer
in the outer loop (10th line) and the cursor is moved to the next
line on the screen (11th line).

33 / 42

Graphs as Data Structures

Graphs as Data Structures
The remove_adjacency_list() Function

1 void remove_adjacency_list(struct vertex **start_vertex)
2 {
3 while(*start_vertex) {
4 struct vertex *horizontal_pointer = (*start_vertex)->next;
5 while(horizontal_pointer) {
6 struct vertex *next_horizontal =
7 horizontal_pointer->next;
8 free(horizontal_pointer);
9 horizontal_pointer = next_horizontal;

10 }
11 struct vertex *next_vertical = (*start_vertex)->down;
12 free(*start_vertex);
13 *start_vertex= next_vertical;
14 }
15 }

34 / 42

Graphs as Data Structures

Graphs as Data Structures
The remove_adjacency_list() Function

The remove_adjacency_list() function which deletes the adja-
cency list from the computer memory is written in a similar way as
the function described in the previous slide. Just like the previous
function it doesn’t return any value, but it has a parameter which
is a pointer to a pointer to the adjacency list. Also two while loops
are used in the function. In the outer one, if the adjacency list is not
empty (3rd line) the declared in the 4th line horizontal_pointer
variable is initialised. If its value is other than null then the in-
ner while loop is performed. In this loop the list of neighbours
of the vertex represented by the node currently pointed by the
start_vertex pointer is deleted by freeing the memory allocated
to its nodes.

35 / 42

Graphs as Data Structures

Graphs as Data Structures
The remove_adjacency_list() Function

The operation of deleting nodes is performed in a similar way as in
the singly linked list. First, the address of the next node of the neigh-
bours list is assigned to the next_horizontal pointer (6th and 7th
lines). Next, the node pointed by the horizontal_pointer variable
is deleted (8th line) and the address stored in the next_horizontal
pointer is assigned to the former pointer (9th line). After the whole
list of adjacent vertices is removed, the node from the list of all
vertices (the “vertical” list), that represents the vertex adjacent to
vertices in the now-deleted “horizontal” list, is removed in the outer
loop. The algorithm of deleting the node is the same as for the
nodes of the neighbours list. First, the address of the next vertex in
the list is assigned to the next_vertical pointer (11th line). Then
memory allocated to the node pointed by the start_vertex pointer
is freed (12th line) and the address stored in the next_vertical is
assigned to the former pointer (13th line).

36 / 42

Graphs as Data Structures

Graphs as Data Structures
The remove_adjacency_list() Function

When both while loops stop the adjacency list is removed from
the computer memory and the value of the pointer to the list (the
start_vertex variable) is null.

37 / 42

Graphs as Data Structures

Graphs as Data Structures
The main() Function

1 int main(void)
2 {
3 start_vertex = convert_matrix_to_list(adjacency_matrix);
4 if(start_vertex) {
5 print_adjacency_list(start_vertex);
6 remove_adjacency_list(&start_vertex);
7 }
8 return 0;
9 }

38 / 42

Graphs as Data Structures

Graphs as Data Structures
The main() Function

In the main() function the convert_matrix_to_list() function
is used for converting the adjacency matrix into the adjacency list
(3rd line). Next, the main() function verifies if the list is not empty
(4th line). If so, it prints the list content with the help of the
print_adjacency_list() function and then the list is deleted by
the remove_adjacency_list() function. After that the main()
function returns 0 and exits.

39 / 42

Applications of Graphs

Applications of Graphs

Graphs are a relatively simple tool that can be applied to many prob-
lems that involve expressing relations between some kind of entities.
An example of such issues is analysis of social networks. Aside from
that the graphs are used for modeling electric circuits, integrated
circuits, overland routes, sea routes, air routes, telecommunication
networks and many other concepts. The vital advantage of using
graphs in Computer Science is that there are many ready-to-use
and effective algorithms for those data structures. More information
about this topic can be found in the “Introduction to Algorithms”
book by T. H. Cormen, Ch. E. Leiserson and R. Rivest or in the
“The Algorithm Design Manual” by Steven S. Skiena.

40 / 42

The End

Questions

?

41 / 42

The End

The End

Thank You For Your Attention!

42 / 42

	Introduction
	Graph Theory
	Graphs as Data Structures
	Applications of Graphs

