
.

......

Fundamentals of Programming 2
The Quicksort and Heapsort Algorithms

Arkadiusz Chrobot

Department of Computer Science

May 14, 2020

1 / 60

Outline

...1 Introduction

...2 Quicksort

...3 Heapsort

...4 Summary

2 / 60

Introduction

Introduction

This lecture is about two sorting algorithms, which are related to
previously discussed topics: the “divide and conquer” method, the
recursion and trees. The first of those algorithms is the Quicksort,
the second one is the Heapsort.

3 / 60

Introduction

Introduction

Before those algorithms will be described, the functions and other
element of the source code are introduced that are common for all
programs presented in this lecture.

4 / 60

Introduction

Introduction
Header Files and Array Type

1 #include<stdio.h>
2 #include<stdlib.h>
3 #include<time.h>
4

5 typedef int int_array_type[10];

5 / 60

Introduction

Introduction
Header Files and Array Type

The program uses functions declared in the included header files to
print the content of an array on the screen and to initialize the prng
which fills the array with numbers. In the last line of the source code
presented in the previous slide a type is introduced (5th line) that
defines an array of 10 elements of the int type.

6 / 60

Introduction

Introduction
The fill_array() Function

1 void fill_array(int_array_type array)
2 {
3 int i;
4 srand(time(0));
5 for(i=0;i<sizeof(int_array_type)/sizeof(array[0]);i++)
6 array[i] = -10+rand()%21;
7 }

7 / 60

Introduction

Introduction
The fill_array() Function

The function presented in the previous slide fills an array with inte-
gers ranging from −10 to 10. Those numbers are chosen randomly.
The array is passed by the parameter of the int_array_type type,
which is defined at the beginning of the program. The sizeof op-
erator applied to such a type returns the number of bytes that an
array of this type would occupy in the memory. The number of the
array elements can be calculated by dividing this value by the size
of the array first element (5th line). Such an expression is applied
in the condition of the for loop.

8 / 60

Introduction

Introduction
The print_array() Function

1 void print_array(int_array_type array)
2 {
3 int i;
4 for(i=0;i<sizeof(int_array_type)/sizeof(*array);i++)
5 printf("%d ",array[i]);
6 printf("\n");
7 }

9 / 60

Introduction

Introduction
The print_array() Function

The print_array() function displays the content of the array passed
by the parameter and moves the cursor to the next line on the screen.
It differs a little from similar functions presented in the previous
semester. The first difference is the type of the parameter. It is the
int_array_type type defined at the beginning of the program with
the use of the typedef keyword. The second one is the printf()
function used for moving the cursor to the next line after the for
loop stops. The argument for this function is a string that contains
only the new line character (6th line). The last difference is the
condition for the loop. It is very similar to the one used in the
fill_array() function, but the first element of the array is refer-
enced with the use of the pointer instead of the square brackets (4th
line).

10 / 60

Introduction

Introduction
The swap() Function

1 void swap(int *first, int *second)
2 {
3 int temporary = *first;
4 *first = *second;
5 *second = temporary;
6 }

11 / 60

Introduction

Introduction
The swap() Function

The definition of the swap() function has been described many times
in previous lectures. It swaps the values of two variables and in the
programs from this lecture it is used for exchanging values of the
array elements.

12 / 60

Quicksort

Quicksort

The Quicksort algorithm was developed by the British computer
scientist C.A.R. Hoare and is one of the most efficient sorting algo-
rithms. Although its worst-case time complexity is Θ(n2), where n
is the number of element, its average and best-case time complexity
is Θ(n · log2(n)). Constants hidden by the asymptotic notation are
small. The Quicksort is an in-place sorting algorithm, but its space
complexity is O(n). It is a consequence of the fact, that it is a re-
cursive algorithm implemented in a form of a recursive subroutine,
hence it intensively uses the call stack. It can be implemented as
an iterative subroutine, but it proves to be a challenging task and
the iterative implementation isn’t more effective than the recursive
one. The Quicksort performs unstable sorting.

13 / 60

Quicksort

Quicksort and “Divide and Conquer”

The Quicksort algorithm can be described using the “Divide and
Conquer” method:

Divide: The A[p . . . r] array is partitioned (values of its ele-
ments are swapped) into two nonempty parts A[p . . . q]
and A[q + 1 . . . r], such that a value of each element
in A[p . . . q] is not greater than the value of any ele-
ment in A[q + 1 . . . r]. The q index is determined by a
partitioning subroutine.

Conquer: The two parts: A[p . . . q] and A[q + 1 . . . r] are sorted
by applying the Quicksort algorithm recursively.

Merge: Since the Quicksort is in-place algorithm, no additional
steps are required to merge the sorted parts: the whole
A[p . . . r] array is already sorted.

14 / 60

Quicksort

Quicksort
The quicksort() Function

1 void quicksort(int_array_type array, int low, int high)
2 {
3 if(low<high) {
4 int partition_index = partition(array,low,high);
5 quicksort(array, low, partition_index);
6 quicksort(array, partition_index+1, high);
7 }
8 }

15 / 60

Quicksort

Quicksort
The quicksort() Function

The quicksort() function corresponds to the Conquer step in the
description presented in the previous slide. It doesn’t return any
value, but has three parameters. The first one is used for passing
the array. By the second and third parameters are passed the indices
that specify the area of the array that has to be sorted. Initially,
when the quicksort() function is called, for example, in the main()
function, this area covers the whole array. Inside the body of the
quicksort() function the first index (low) is compared with the
last index (high). If the former is less than the latter then there is
a part (area) of the array that still needs to be sorted. Otherwise
the function exits. If the condition in the 3rd lined is satisfied then
the partition() function is invoked that reorders the given part of
the array and determines the point where this area is partitioned in
two smaller parts. Next, the quicksort() function is called twice,
for each of the new parts separately.

16 / 60

Quicksort

Quicksort
The quicksort() Function

The first part is sorted by an instance of the quicksort() function
that deals with elements of the array that have indices raging from
the first index (low) to the partition index (partition_index), in-
cluding both of them. The second part consists of elements with
indices raging from the partition index (excluding) to the last in-
dex (high), including. The partition() function is defined in the
program before the quicksort() function, but in the slides it is
described after the latter.

17 / 60

Quicksort

Quicksort
The partition() Function

1 int partition(int_array_type array, int low, int high)
2 {
3 int pivot = array[low];
4 int i = low-1, j = high+1;
5

6 while(i<j) {
7 while(array[--j]>pivot)
8 ;
9 while(array[++i]<pivot)

10 ;
11 if(i<j)
12 swap(&array[i],&array[j]);
13 }
14 return j;
15 }

18 / 60

Quicksort

Quicksort
The partition() Function

The partition() function corresponds to the Divide step in the
description that uses the “Divide and Conquer” method. It has
three parameters, which have the same meaning as the parameters
of the quicksort() function. The partition() function returns a
number, which is an index that specifies the partition point of the
currently sorted part of the array. In the 3rd line of the function is
declared and initialised a variable named pivot, that stores so-called
pivot value which specifies how the part of the array is reordered.
In the function, the value of the first element of the sorted part of
the array is assumed as the pivot value (line no. 3). In the 4th line
of the function are declared and initialised two variables that are
used for indexing the sorted part of the array from the beginning
(the i variable) and from the end (the j variable). Please note, that
initially both indices specify elements that are outside the sorted
part of the array.

19 / 60

Quicksort

Quicksort
Funkcja partition()

The outer while loop (6th line) is repeated as long as the the value
of the i index is smaller than the value of the j index, or in other
words, until the indices “meet” or “miss” each other. Inside the loop
are performed two other while loops. The first one (lines no. 7 and
8) traverses the given part of an array starting from the end toward
the beginning and searches for an element that has a value equal
to or smaller than the pivot value. The second internal loop (lines
no. 9 and 10) traverses the same part of the array but from the be-
ginning to the end and searches for an element with a value greater
than or equal to the pivot value. Please note, how these loops are
implemented. The searching takes place inside the condition state-
ment of the loops. The pre-increment and pre-decrement operators
are applied to the indices to avoid accessing elements of the array
that are outside of the sorted part or even accessing elements outside
the array itself.

20 / 60

Quicksort

Quicksort
The partition() Function

After both internal loops stop, the function performs the conditional
statement (11th line) to check whether the i index is smaller than
the j index. If so, then the order of the values in the elements
associated with those indices is incorrect, and they have to switch
the places. If not, then the outer loop stops and the j index specifies
a partition point for the sorted part of the array, hence the index is
returned by the function (14th line).
In the next slide is a call tree that illustrates how the quicksort()
function sorts an array that has seven elements that store natu-
ral numbers. In the upper part of the tree it is marked which ac-
tions are performed by the quicksort() function and which by the
partition() function. In the bottom part of the tree no such de-
scription is given, to keep the drawing more legible.

21 / 60

Quicksort

Quicksort

..

8 4 3 10 1 5 9
i j

5 4 3 10 1 8 9
i j

5 4 3 1 10 8 9
j i

.

5 4 3 1
i j

1 4 3 5
j i

.

1 4 3
j
i

.

1
j
i

.

4 3
i j

3 4
j i

.

3
j
i

.

4
j
i

.

5
j
i

.

10 8 9
i j

9 8 10
j i

.

9 8
i j

8 9
j i

.

8
j
i

.

9
j
i

.

10
j
i

.

pa
rt

it
io

n

.

pa
rt

it
io

n

.

pa
rt

it
io

n

.

quicksort

.

quicksort

.

quicksort

22 / 60

Quicksort

The main() Function

1 int main(void)
2 {
3 int_array_type array;
4 fill_array(array);
5 print_array(array);
6 quicksort(array,0,
7 sizeof(int_array_type)/sizeof(*array)-1);
8 print_array(array);
9 return 0;

10 }

23 / 60

Quicksort

The main() Function

An array of the int_array_type type is declared in the 3rd line
of the main() function, which is then initialised with the use of the
fill_array() function and sorted with the help of the quicksort()
function. Aside from the array the last function takes indices as
arguments, hence the second argument of the function is 0 (the
index of the first element). The third one is the number of elements
in the array decremented by one (the index of the last element).
The number of elements is calculated using the same expression as
in the print_array() function. After the quicksort() function
exits, the content of the sorted array is displayed on the screen and
the main() function also exits returning the 0 value.

24 / 60

Quicksort

Other Versions

There are several variants of the Quicksort algorithm that can be
implemented in a different way than the one already presented. The
other frequently used implementation of the Quicksort algorithm is
described in the next slides. It’s not as effective as the earlier one,
but many computer scientists think its more legible, easier to create
and less prone to contain mistakes.

25 / 60

Quicksort

Quicksort
The quicksort() Function — Second Version

1 void quicksort(int_array_type array, int low, int high)
2 {
3 if(low<high) {
4 int partition_index = partition(array,low,high);
5 quicksort(array, low, partition_index-1);
6 quicksort(array, partition_index+1, high);
7 }
8 }

26 / 60

Quicksort

Quicksort
The quicksort() Function — Second Version

There is only one detail that differentiates the definition of the
quicksort() function presented in the previous slide from the one
described earlier. The part of the array that is sorted by the first
recursive invocation of the function doesn’t include the element spec-
ified by the partition_index (5th line).

27 / 60

Quicksort

Quicksort
The partition() Function — Second Version

1 int partition(int_array_type array, int low, int high)
2 {
3 int pivot = array[low], middle = low, i;
4

5 for(i=low+1; i<=high; i++)
6 if(array[i]<pivot) {
7 middle++;
8 swap(&array[middle],&array[i]);
9 }

10 swap(&array[low],&array[middle]);
11 return middle;
12 }

28 / 60

Quicksort

Quicksort
The partition() Function — Second Version

In this implementation of the partition() function only one iter-
ation statement is used and this time it is the for loop. Just like
in the previous version a few local variables are declared first. The
pivot variable has the same purpose as in the previous version. The
middle variable is an index that eventually will specify the element
of the sorted part of the array in which the pivot value should be
stored. The i variable is the loop counter and simultaneously the
variable used for indexing the array. The concept of this imple-
mentation of the partition() function is as follows: the values in
the sorted part of the array should be so rearranged that the values
smaller than the pivot value ought to be moved to the left and the
equal or bigger to the right. Since the value of the first element
of the sorted part is chosen as the pivot value then all the other
elements should have values greater or equal to the pivot value. If
not, then the smaller values should be moved to the left. The rest
of the function takes care of it. 29 / 60

Quicksort

Quicksort
The partition() Function — Second Version

Please note the for loop. It iterates over all elements of the sorted
part, except the first one. Hence, the i index is initialised with a
value greater by one than the value of the low parameter. The loop
stops when the loop counter reaches a value grater than the value
of the high parameter. Inside the loop, the conditional statement
(6th line) checks if the current element of the sorted part of the
array stores a value which is less than the pivot value. If so, than
the value of the middle index is incremented by one and the value
of element specified by this index is swapped with the value of the
element specified by the i index. After the loop stops the value of
the first element of the sorted part of the array is swapped with the
value of the element specified by the middle index (10th line). After
that the function returns the middle index as the partitioning point
for the sorted part of the array.

30 / 60

Quicksort

Quicksort
The qsort() Function

The Quicksort algorithm is so effective, that the creators of the C
language decided to define the qsort() function that implements
it, as a part of the language standard library. Its prototype is in the
stdlib.h header file. The function doesn’t return any value but
has four parameters. The first one, of the void * type, is used for
passing the array to be sorted. By the second one, the number of
array elements is passed and by the third one the size of a single
element. The last, forth, parameter is a function pointer that points
to a function that compares values of array elements. Its prototype
should be as follows:

int compare(const void *, const void *);
By the parameters are passed pointers to the compared elements.
If the value of the first one is greater than the value of the second
one then the function ought to return a positive integer number.
Otherwise it should return a negative integer number. If the values
are equal, the function should return 0. 31 / 60

Quicksort

Quicksort
Funkcja qsort()

The way, the qsort() is defined allows it to sort any array of any
number and type of elements.
The next slides present the definition of a function that compares
two elements of an array of elements of the int type and show how
the qsort() function can be invoked.

32 / 60

Quicksort

Quicksort
The compare_int() Function

1 int compare_int(const void *first, const void *second)
2 {
3 return *(int *)first - *(int *)second;
4 }

33 / 60

Quicksort

Quicksort
The compare_int() Function

The definition of the compare_int() function is short. It has two
pointer parameters named first and second. The body of the
function is basically one statement, in which both pointers are first
casted on the int * type, then they are dereferenced and the values
pointed by those pointers are subtracted from each other. If the
result is a negative number, than the first value is smaller than the
second one. If the result is positive than the first value is the bigger
one. If the result is zero, then they are equal. The result is returned
and the function exits.

34 / 60

Quicksort

Quicksort
The main() Function

1 int main(void)
2 {
3 int_array_type array;
4 fill_array(array);
5 print_array(array);
6 qsort((void*)array,
7 sizeof(int_array_type)/sizeof(array[0]),
8 sizeof(array[0]),compare_int);
9 print_array(array);

10 return 0;
11 }

35 / 60

Quicksort

Quicksort
The main() Function

The lines no. 6, 7 and 8 contain the invocation of the qsort()
function. As the first argument is passed the pointer to the sorted
array. It is casted on the void * type. The next argument is the
number of element of the array, calculated with the use of the same
expression which is applied for that purpose in the fill_array()
function. The size of the first element of the array is passed as the
third argument. It can be any element of the array — all have the
same size, however the C language standard guarantees that the
first element of the array always exists. The pointer to the function
that compares elements of the array is passed as the last argument.
Please notice, that it is the name of the function.

36 / 60

Heapsort

Heap
The word heap has two meanings in the computer science. It can
mean a part of the program memory, where the dynamically allo-
cated variables are created or a binary tree, which has a shape of
the full binary tree, or the complete binary tree, and which satisfies
the heap property. If the heap is the complete binary tree, then the
missing nodes in the last level have to be on the right side. The heap
is usually not implemented in the form of a dynamically allocated
data structure, but it is mapped into an array in such a way, that
the key of the node is the index of the element and the value of the
node is the value of the element. The root is always mapped into the
first element of the array. Assuming that the indices of the array
start from 1 and that the index denotes an index in the array of a
heap internal node then the index of its left child can be calculated
using the expression 2 · index and the index of the right child with
the use of the expression 2 · index + 1. The parent of any node of
the heap, except the root can be calculated using the expression
index/2, where “/” denotes the integer division. 37 / 60

Heapsort

Heap

The indices of the arrays in the C language start from 0. If such a
value is substituted for index then the expressions from the previous
slide give incorrect results. There are two solutions for this problem.
Either the first element of the array has to be always omitted or the
expressions have to be accordingly transformed. In the presented
discussion the second possibility is chosen. Thus, the expression
for calculating the index of the parent becomes (index − 1)/2. The
index of the left child is calculated using the following expression:
2 · index + 1 and for calculating the index of the right child such
an expression: 2 · index + 2 can be applied. In the next slide is an
illustration of the heap and its mapping into an array which indices
start from zero (so-called zero-based array).

38 / 60

Heapsort

Heap

..16.
0

.

14

.

1

.

8

.

3

.

2

.

7

.

4

.

8

.

7

.

4

.

1

.

9

.

10

.

2

.

9

.

5

.

3

.

6

.

16

.

0

.

14

.

1

.

10

.

2

.

8

.

3

.

7

.

4

.

9

.

5

.

3

.

6

.

2

.

7

.

4

.

8

.

1

.

9

39 / 60

Heapsort

Heap

The presented heap is called max-heap. The heap property for such
a heap is defined as follows: A[parent(i)] ≥ A[i], which means that
the value of a parent of any node is always greater or equal to the
value of the node. The A letter denotes an array. There are also
min-heaps for which the property is defined as A[parent(i)] ≤ A[i].
For the rest of the lecture the max-heaps are used. The relation
between the heap and the array into which the heap is mapped
is given by the following expression: length(heap) ≤ lenght(array),
where length is the number of the elements of the array or the heap.
This expression means that not all of the array elements have to be
part of the heap.

40 / 60

Heapsort

Heapsort

The heaps can be applied for building so-called priority queues, but
in this lecture their use in the array sorting algorithm, closely related
to the selection sort algorithm, is discussed. The algorithm is called
the Heapsort and just like the Quicksort it performs unstable sorting.
When compared with the latter, the Heapsort is slower, but still it is
one of the most effective sorting algorithms. Its time complexity for
all possible cases is O(n · log2(n)). The Heapsort can be implemented
in a recursive (the one is demonstrated in the lecture) or in an
iterative form.
The next slides show definitions of functions that calculate indices
of the right and left child of a node (the calculation of the parent’s
index is not applied in this algorithm). Then the function that
reestablishes the heap property, the function that builds the heap
and finally, the function that sorts the array are presented.

41 / 60

Heapsort

Heapsort
The get_left_child_index() Function

1 static inline int get_left_child_index(int index)
2 {
3 return (index << 1) + 1;
4 }

42 / 60

Heapsort

Heapsort
The get_left_child_index() Function

The function shown in the previous slide calculates the index of
the heap node’s left child. To speed up the calculations the bitwise
shift left operator is applied instead of the regular multiplication
operation. It’s possible because the index of the node is multiplied
by 2. Additionally, in the function header the inline keyword is
used which means that the function should be expanded like a macro
or optimized in other way by the compiler.

43 / 60

Heapsort

Heapsort
The get_right_child_index() Function

1 static inline int get_right_child_index(int index)
2 {
3 return (index << 1) + 2;
4 }

44 / 60

Heapsort

Heapsort
The get_right_child_index() Function

The function presented in the previous slide calculates the index of
the heap node’s right child. The function differs from the previous
one only by its name and the applied expression.

45 / 60

Heapsort

Heapsort
The heapify() Function

1 void heapify(int_array_type array, int index, unsigned int size)
2 {
3 int left = get_left_child_index(index),
4 right = get_right_child_index(index),
5 largest = index;
6 if(left<=size)
7 if(array[left]>array[index])
8 largest = left;
9 if(right<=size)

10 if(array[right]>array[largest])
11 largest = right;
12 if(largest!=index) {
13 swap(&array[index],&array[largest]);
14 heapify(array,largest,size);
15 }
16 }

46 / 60

Heapsort

Heapsort
The heapify() Function

The heapify() function is the fundamental subroutine in the imple-
mentation of the Heapsort algorithm. It restores the heap property.
The function doesn’t return any values but has three parameters.
The first one is for passing the array with a mapped heap, in which
the heap property is violated. The second one is for passing an
index of a node that possibly violates the property. By the last
parameter the length of the heap is passed. In the function’s body
the indices of the left and right child of the node are calculated and
stored in local variables named left and right (lines no. 3 and
4). To the largest local variable is assigned the index of the node
that possibly violates the heap property (5th line). This variable is
used for storing the index of the node from the aforementioned three
(the node that likely violates the property and its two children) that
has the greatest value. Initially it is assumed that this is the node
specified by the index parameter and that the heap property is not
violated. 47 / 60

Heapsort

Heapsort
The heapify() Function

Next, the function checks if the left child of the node exists, i.e. if its
index stored in the left variable is within the length of the heap (6th
line). If so, it then verifies if the value of this child is greater than the
value of the node (7th line). If also this condition is satisfied then
the index of the child is assigned to the largest variable. Similarly,
in the 8th line the function checks if the right child of the node
exists. If so, then the function verifies if its value is greater than
the value of the node currently specified by the largest variable.
In this line it can be the node specified by the index parameter or
its left child. If the value of the right child is grater than the value
of that node then the index of this child is assigned to the largest
variable (11th line). Thus, after the statement in the 11th line is
performed in the largest variable is stored the index of the node
that has the greatest value of the following three: the node that
likely violates the heap property and its two children.

48 / 60

Heapsort

Heapsort
The heapify() Function

In the 12th line the function checks if the value of largest variable
is different than the value of the index parameter. If not, then the
heap property is not violated and the function exits. If so, then the
function swaps the values of the nodes specified by the index and
largest variables (13th line). This however can violate the heap
property in the bottom part of the heap, i.e. it can be violated in
the subtree where the node specified by the largest index is a root.
Thats why, the heapify() function calls itself recursively for that
node (14th line).

49 / 60

Heapsort

Heapsort
The build_heap() Function

1 void build_heap(int_array_type array)
2 {
3 int i;
4 const int number_of_elements =
5 sizeof(int_array_type)/sizeof(*array);
6 for(i=number_of_elements/2;i>=0;i--)
7 heapify(array,i,number_of_elements-1);
8 }

50 / 60

Heapsort

Heapsort
The build_heap() Function

The build_heap() function creates a heap in an array that is to be
sorted. It uses to this end the heapify() function. The build_heap()
function doesn’t return any value but takes one argument, which is
the array where it creates the heap. A constant that describes the
number of elements in the array is defined in the 4th and 5th lines.
The heap is created in the for loop. Please note, that the loop
iterates over the elements of the array starting in the middle and
downward. The question arises, why the second (upper) part of the
array is not covered by the loop? The function assumes that the
length of the heap is equal to the length of the array. It means
that the elements that belong to the upper part of the array are the
leaves of the heap (or in other words are a single element heaps).
The function assures that those elements will also be included in the
heap by applying the heapify() function for the first part of the
array — the latter function will take care of it.

51 / 60

Heapsort

Heapsort
The heapsort() Function

1 void heapsort(int_array_type array)
2 {
3 int last_index = sizeof(int_array_type)/sizeof(*array)-1;
4 int i;
5

6 build_heap(array);
7 for(i=last_index;i>0;i--){
8 swap(&array[0],&array[i]);
9 heapify(array,0,--last_index);

10 }
11 }

52 / 60

Heapsort

Heapsort
The heapsort() Function

The heapsort() function sorts the array. It doesn’t return any
value, but takes as the argument an array for sorting. In the function
body is declared and initialised the last_index variable. Its value
is the index of the last element of the array belonging to the heap
that also specifies the length of the heap. First, the function creates
the heap in the array by invoking the build_heap() function and
then, in the for loop iterates over the array starting from the last
element (initially it is also the last node of the heap) and finishing
in the second element. In each of the iterations it swaps the value
of the first element of the array with the element specified by the
loop counter (the i variable), and then it restores the heap property
starting with the first element of the array. What is the purpose for
such steps? The greatest value in the heap is in its root, which is
mapped into the first element of the array. In the sorted in ascending
order array this value should be stored in the last element. Thus,
those elements should exchange their values (8th line). 53 / 60

Heapsort

Heapsort
The heapsort() Function

This modification can however violate the heap property. That’s
why the heapsort() function calls the heapify() function for the
first element of the array. But this time, the last element of the array
is excluded from the heap, because now it has the proper value. In
each subsequent iteration of the for loop the length of the heap is
decremented by one and the first element of the array (the root of
the heap) exchanges its value with the node of the heap specified by
the i index. After the loop stops the array is finally sorted.

54 / 60

Heapsort

Heapsort
The main() Function

1 int main(void)
2 {
3 int_array_type array;
4 fill_array(array);
5 print_array(array);
6 heapsort(array);
7 print_array(array);
8 return 0;
9 }

55 / 60

Heapsort

Heapsort
The main() Function

The only difference in the main() functions of the example programs
demonstrating the Quicksort and the Heapsort algorithms is that
the latter calls the heapsort() function instead of the quicksort()
function (6th line). The former function takes as an argument the
array to be sorted.

56 / 60

Summary

Summary
Both introduced algorithms for sorting arrays belong to the most
efficient in this category, but in the best and average case the Quick-
sort is slightly better. However, the worst-case time complexity for
the latter algorithm is Θ(n2) and that happens when the array is al-
ready sorted. In this case the algorithm partitions the array into two
part, one of them having only one element and the other consisting
of the rest of the elements of the original part of the array. The best
partitions are those that result in two parts which have equal (with
the respect to one element) number of elements. To avoid the worst
case, values of several randomly chosen elements can be exchanged.
There is no guarantee that those changes don’t result in sorting the
array, but they are likely to disturb the order of the values if the
array is already sorted. Other solution to the wost-case scenario is
to chose the pivot value randomly from all the values in the sorted
part of the array. However, none of the methods make it certain
that the worst case doesn’t happen.

57 / 60

Summary

Summary

The Heapsort algorithm has the advantage over the Quicksort al-
gorithm that the recursion can be totally eliminated from its im-
plementation. This can reduce using the call stack. The space
complexity of the algorithm can be constant1.
Statistically the Quicksort algorithm is more frequently used than
the Heapsort, but in some applications it is better to use the latter
one. An example of such applications are remote services, which
need to sort the received data. If the Quicksort algorithm was used
in such services then they would be vulnerable to the Denial of
Service (DoS) attacks. The attackers would only need to provide
specially prepared input data for the services.

1Such implementations of the Heapsort algorithm are described in the follow-
ing books: Jon Bentley, “Programming Pearls” and A. V. Aho, J. E. Hopcroft
and J. D. Ullman, “Data Structures and Algorithms”.

58 / 60

The End

Questions

?

59 / 60

The End

The End

Thank You For Your Attention!

60 / 60

	Introduction
	Quicksort
	Heapsort
	Summary

